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1  |   INTRODUCTION

A multiple input multiple output (MIMO) radar uses mul-
tiple antennas to transmit different orthogonal waveforms 
and receives the reflected signals from the target. The per-
formance of the MIMO-radar system is high as compared 
to conventional radar systems [1–3]. Generally, MIMO ra-
dars can be categorized into two types—MIMO with collo-
cated antennas and MIMO with separated antennas. MIMO 
with collocated antennas enhances the estimation perfor-
mance of beam-forming using effective spatial degrees of 
freedom. The coherent signals are detected from the radar 

target by placing both the transmitter and receiver anten-
nas in MIMO radars. The statistical MIMO radar antenna 
enhances the detection and estimation of the resolutions 
using the diversity of transmission paths [4]. The game the-
ory method has been used within the range of the radars. 
Various techniques have been implemented to optimize the 
radar's transmission parameters according to underlying 
scenarios. The detection performances have been improved 
by implementing the zero sum game in the design of pola-
rimetric waves [5]. Recently, game theory techniques have 
been extended to address several challenges and optimize 
various radar parameters [6].
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The zero sum game theoretic (ZSGT) technique is em-
ployed to examine the interaction between MIMO radars [7]. 
In the network radar, the features of the radar view point are 
improved using an adequate coded waveform in frequency. 
In addition, the signal-to-interference plus noise ratio (SINR) 
of each radar is improved using noncooperative games [8,9]. 
The radar network is considered where a generalized Nash 
game is employed to control the transmission power perfor-
mance of the radar [9]. The noncooperative game technique 
is used to address the power optimization issue with a pre-
defined SINR limitation [10]. In radar systems, the prob-
lem of power allocation (PA) and distributed beamforming 
are obtained using various game theoretic methods [11–15]. 
Improper power allocation to the primary and secondary 
users affects the performance of the MIMO-radar network. 
To overcome the aforementioned problem, particle swarm 
optimization (PSO) is integrated with both the noncooper-
ative game theories based on Nash equilibrium. This inte-
gration is used for optimizing the transmission power in a 
MIMO network. The MIMO radar networks are divided 
into primary and secondary clusters using the kernel fuzzy 
C-means (KFCM) algorithm. The KFCM technique is used 
for clustering/grouping of sensor nodes in the MIMO radar 
network. The major objective of the KFCM-Pareto optimal-
ity Nash equilibrium (PONE)-PSO method is to allocate the 
power for each antenna of the MIMO radar while maintaining 
the desired SINR threshold.

This paper is organized as follows. Section 2 presents a 
detailed literature survey of spectrum sensing techniques 
for PA in a MIMO network. Section  3 describes the prob-
lem statement and solutions of the MIMO radar network. 
Section  4 briefly describes the proposed KFCM-PONE-
PSO method. The comparative experimental results for the 
proposed KFCM-PONE-PSO method and existing methods 
are presented in Section 5. The conclusion is drawn in the 
Section 6.

2  |   LITERATURE SURVEY

In this section, a literature review of the existing research 
studies related to the MIMO-radar system are presented.

Wang and others [16] proposed a jamming PA approach 
for the MIMO radar; this approach was analyzed based on the 
performance of minimum mean square error (MMSE) and 
mutual information. These performances of MMSE and mu-
tual information were utilized as the utility function. The mu-
tual information was used for power allocation between the 
MIMO radar and jammer. The jamming PA approach is used 
to increase the target estimation of MMSE and reduce the 
mutual information between the target impulse response and 
echo of the MIMO network. The simulation outputs prove 
that the proposed method increases the MMSE and reduces 

the mutual information for improving the jamming perfor-
mance. The MMSE and mutual information based jamming 
of the PA method were used to obtain the power spectral den-
sity (PSD), noise PSD, and radar waveform PA (RWPA). The 
MMSE value of MMSE-based jamming PA is higher than 
that obtained using the mutual information based strategy 
when the radar waveform PA is uniform.

Ma and others [17] introduced the joint scheme of antenna 
subset selection and an optimal PA to carry out the localiza-
tion in a MIMO radar network. In this work, sensor manage-
ment was developed by resolving an optimization issue that 
was formulated to reduce the error in estimating the target 
position. A suboptimal technique was used for solving the 
optimization issues. The proposed scheme divides the opti-
mization into two steps; each step was transformed into sec-
ond-order cone programming (SOCP) by convex relaxation. 
The proposed joint approach of the antenna subset selection 
and optimal PA (OPA) increases the accuracy of localization 
detection with resource constraints. Ma et al.’s research for-
mulated the issue as an optimization scheme and proposed 
the two-step suboptimal technique to tackle the complexity 
in simultaneous optimization. However, the performance of 
the proposed method is not too efficient for a MIMO radar.

Song and others [18] proposed a joint resource allocation 
technique for tracking several targets in distributed MIMO 
radar networks. The residual resources are used to improve 
the tracking performances for all key targets. The proposed 
method divides the optimization into three steps, where each 
step transforms the corresponding mixed Boolean optimiza-
tion issue into an SOCP issue by convex relaxation. Initially, 
the cyclic minimization method is used to obtain the approx-
imate optimal solution. The proposed method achieved the 
lowest velocity estimation in MSE using the smallest number 
of transmitters. In this technique, the joint resource allocation 
concentrates only on the key target during target tracking. 
The proposed algorithm is only applicable to a limited num-
ber of users; it is unable to analyze a network with a large 
number of users.

Lan and others [19] developed a two-step water filling 
technique for the Stackelberg game between the MIMO radar 
network and the target in the presence of clutter. The tech-
nique was applied to distribute jamming power, and common 
water filling was applied to distribute signal power based 
on mutual information. In the Stackelberg equilibrium of 
radar and target dominance, the optimization technique was 
achieved in the presence of clutter. Moreover, the optimiza-
tion with the antenna's state was considered to manage the 
destruction in MIMO radar transmitting antennas. In this 
study, the jamming power was focused only on the subspace 
with less noise.

Panoui and others [20] presented the distributed waveform 
design for multistatic radar networks. The major objective of 
this technique is to improve the signal to disturbance ratio 
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(SDR) of the cluster by selecting the suitable waveforms. 
Thus, the best waveform for each cluster is determined. The 
radar performance was improved by determining the equi-
librium and establishing interaction between each radar. 
However, if the number of clusters increases, then the imped-
ance prompted in the system also increases, which reduces 
the value of SDR for each cluster.

Shi and others [21] presented the low probability of in-
tercept-based optimal power allocation (LPI-OPA) for inte-
grated multistatic radar and communication systems. In each 
transmitter, the LPI-OPA is used to optimize the transmitted 
power allocation for reducing the total power consumption. 
The OPA is used to achieve the predefined target detection 
for the radar receiver (RR) and an appropriate data rate for 
the communication receiver (CR). Moreover, linear program-
ming and the Karush-Kuhn-Tucker (KKT) conditions are 
used to solve the two subproblems—portions of the transmit-
ter power resource and transmitted power allocated for the 
information waveforms. The requirements of communication 
rate and target detection are satisfied using the LPI-OPA. The 
computational complexity of exhaustive search used in the 
optimization problem is high.

Shi and others [22] developed the power minimization 
based joint subcarrier assignment and power allocation (PM-
JSAPA) for integrated radar and communications systems 
(IRCSs). The power resource allocation and optimization of 
available carriers using the PM-JSAPA strategy reduces the 
IRCS’s radiated power. Subsequently, three-step resource al-
location is developed for solving the resulting optimization 
problem, that is, the mixed integer nonlinear programming 
(MINLP) problem. In the first step, the available subcarriers 
are allotted to both the radar and communication systems. In 
the second step, the KKT is used to solve the power resource 
allocation problem, and the problem of convex power alloca-
tion is solved under the conditions of KKT in the third step. 
The PM-JSAPA does not consider the IRCSs with multiple 
transmitters, receivers, and downlink communications during 
power allocation.

Shi and others [23] presented the Nash bargaining solu-
tion (NBS)–based game theory for controlling the power in 
distributed multiple-radar systems (DMRSs). The main ob-
jective of NBS is to reduce power consumption along with 
protection of transmission. The utility function of the DMRS 
is improved by developing the unified analytical framework. 
The transmission is protected using the interference power 
constraints (IPCs) in DMRS. In mathematical formulation, 
the IPC is transformed into the term of extra pricing for solv-
ing the complexity. The NBS developed for DMRS obtains 
less SINR than the traditional NBS method.

Shi and others [24] developed the robust Stackelberg 
game–based power control (RSG-PC) for multistatic radar 
and massive MIMO communication systems. For each radar, 
the radiated power in the worst case is reduced by RSG-PC. 

The hierarchical competition among the multiple radars and 
MIMO-communication base station (CBS) is described by 
the Stackelberg game model. Here, multiple radars are op-
erated in a noncooperative manner, competing for the power 
resource. The interference present in the communication is 
avoided by considering the pricing mechanism and uncer-
tainties in path propagation gains. The RSG-PC model ana-
lyzed only a single massive MIMO-based CBS. However, the 
RSG-PC model failed to analyze multiple CBSs.

3  |   PROBLEM STATEMENT

The following section defines the problem statement of PA 
techniques for the MIMO radar network and provides details 
on how the proposed methodology addresses the following 
problems.

•	 In the MIMO radar network, the problem arises from the 
distances between the clusters.

•	 Coexisting multicarrier radar and communication systems 
require more delay [25].

•	 PA is the major challenge in the millimeter-wave-based 
MIMO radar network because of uneven distribution of 
power in the sensor network.

Solution: In this study, the MIMO radars are initially 
separated into clusters. The KFCM algorithm is used for 
clustering the sensor nodes based on the distance between 
the networks. The classification of primary and secondary 
users depends on the distance analysis of the network using 
the KFCM algorithm. Each cluster secures a certain detec-
tion in terms of SINR while allocating the minimum possible 
power to each and every radar. After the clustering process, 
the power loss is computed based on the threshold between 
the primary and secondary clusters. After computing the 
power loss, PSO-based cooperative and noncooperative game 
theory is used to allocate power in the MIMO network. The 
PSO-based noncooperative game is used for allocating power 
for the secondary clusters as well. The major aim of the PSO 
algorithm is to select the best power to allocate to the clus-
ters of the MIMO network. To apply the game theoretic algo-
rithm, the optimal power value is chosen for each antenna and 
allocated to the MIMO radar.

4  |   KFCM-PONE-PSO METHOD–
BASED POWER ALLOCATION IN 
MIMO RADAR NETWORK

The main challenges in the MIMO radar system are distribu-
tive power allocation. To overcome this problem, we im-
plemented PSO with Nash and Pareto game theory to attain 
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appropriate power allocation in the MIMO radar network. In 
this study, power allocation of the distributive radars is per-
formed using PSO with Nash equilibrium for noncooperative 
networks, and PSO with Pareto optimality for cooperative 
networks is considered as a major objective of the KFCM-
PONE-PSO method. Figure  1 depicts the workflow of the 
proposed KFCM-PONE-PSO method. The principle of the 
method is described in the following.

4.1  |  System model

In KFCM-PONE-PSO, the power allocation problem is ana-
lyzed in the distributed multistatic MIMO radar network. 
Therefore, multiple MIMO radars are divided into clusters for 
improving the scalability of the system. The proposed method 
requires efficient detection to recover further information on 

the target's exact characteristics and positions. Let us consider 
that the MIMO radars are clustered into K clusters using the 
KFCM algorithm. The K clusters are denoted as Dt  =  {D1, 
D2, …, Dk}, and these clusters from the K-means clustering 
contain T MIMO radars. The set of radars that belong to the 
cluster is denoted as Dk = (Mrk, Mrk2, …, MrkT). The goal of the 
clusters of the network is to utilize the minimum transmission 
power while generating the waveform. The clusters of the net-
work are processed independently in noncooperative behavior. 
However, a single cluster is not affected by any other clusters 
present in the network. The MIMO radar network with the 
KFCM cluster technique is represented as depicted in Figure 2.

Signal-return samples are received by radars, and hypoth-
esis testing is utilized for making decisions in the presence of 
targets at each time step. The number of radars in the particu-
lar cluster is identified based on the signals transmitted from 
the radars. These transmitted signals are orthogonal to each 
other; the waveforms from different clusters are not orthogo-
nal to each other.

4.2  |  Pareto optimality using particle swarm 
optimization

The idea of Pareto optimality gains efficient usage of power 
resources in the MIMO radar network [26–28]. This section 
describes the Pareto optimal task using the PSO algorithm for 
allocating power to the primary clusters (cooperative) of the 
MIMO network system.

4.2.1  |  Pareto optimality

The received signal (b) of the MIMO radar network is ex-
pressed as (1):

(1)b=Ha+n

F I G U R E  1   Workflow of proposed KFCM-PONE-PSO method
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F I G U R E  2   MIMO radar network with KFCM clusters
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where the transmitted signal vector is specified as a and the 
additive white Gaussian noise (AWGN) noise vector with zero 
mean and variance is represented as n. Equation  (2) defines 
the overall channel capacity (CC) of the MIMO radar network.

where the system bandwidth is denoted as B, nonzero eigenvalue 
is λj, allocated power to the respective channel is represented 
as Pj, and power spectral density of AWGN is represented as 
N0. The nonzero eigenvalues are similar when the number of 
transmitting antennas in the transmitter is large. Therefore, the 
antenna with less power allocation is selected for optimal power 
allocation in the network. Subsequently, the channel capacity is 
approximately expressed by (3):

where R represents the receiver antennas, L denotes the selected 
antenna, and Pt represents the total transmitted power.

The throughput per unit of bandwidth spectrum efficiency 
(SE) is expressed as

The ratio of the transmitted number of bits to the total 
power consumption is expressed as ηEE:

where the path loss is denoted as � and the total power con-
sumption is denoted as PΣ.

The energy efficiency (EE)-SE tradeoff multi-objective 
problem is formulated by optimizing EE and SE. Equation (6) 
provides the formulated optimization problem:

where P=

{
P

t
|0≤P

t
≤P

max

t

}
 and L=

{
L|1≤L≤TA

}
 repre-

sent the transmitted power constraint and set of selected anten-
nas, respectively.

Pareto optimal set
The vector 

→

a ∈A is considered as Pareto optimal when there 
is no other 

→

a ∈A that satisfies fj (
→

a )≥ fj (
→

a ), ∀=1, 2, . . . , m, 
where the objective function is represented as fj (a).

In particular, in this study, Pt ∈P or L∈L is a Pareto-
optimal solution if there exists no other P′

t
 or L′ that 

satisfies �EE P′
t
≥�EE Pt and �SE

(
L�
)
≥�SE (L) or/and 

�SE

(
L�
)
≥�SE (L). The properties of ηSE and ηEE are as fol-

lows: (a) ηSE is maximized based on the transmitted power 
and number of selected antennas; and (b) ηEE depends on the 
transmit power. The fitness function used under the Pareto 
optimality condition is power allocation. In this study, Nash 
equilibrium is used to place the radar in the location where 
it consumes less power during data transmission. Pareto op-
timality is used only for radars that are present in cooper-
ative clusters. Subsequently, the PSO is used to obtain the 
minimum least power of radar for different locations of the 
search area.

4.2.2  |  PSO-based power allocation using 
Pareto optimality for primary clusters

The bi-objective optimization problem is solved using  
the weighted sum technique, which is significantly easy 
to solve and produces a single solution. At first, PSO 
randomly creates a population N in dimension D. In 
PSO, the particle is represented as Xi and each cluster ve-
locity is represented as v. The position and velocity of 
the particle are initialized based on the location of the  
radars and its own speed, respectively, as PSO inte-
grated with Pareto optimality considers only the radars 
present in the cooperative clusters. The velocity is con-
trolled using vmin and vmax. The velocity and location of  
each particle of PSO is expressed as (7) and (8), 
respectively:

 

where i = 1, 2, …, N, n = 1, 2, …, intermax, w is the inertia 
weight, c1 and c2 are two positive constants known as ac-
celeration coefficients, and r1 and r2 are the two uniform 
random numbers distributed in the interval [0, 1]. Every 
cluster maintains its velocity and position. It remembers 
the efficient value that ηSE has been obtained for the best 
fitness position. Furthermore, the PSO algorithm main-
tains the best fitness value obtained among all the clusters 
in the swarm (global best fitness) and the candidate solu-
tion that was used to obtain this global best position fitness. 
Equations  (7) and (8) allow the clusters to search around 
their individual best positions pbest and update the global 
best position gbest.
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The new task assignment in the problem of power alloca-
tion is obtained based on cluster updates using (7) and (8). 
However, this task assignment achieves floating point values 
(FPVs) in the continuous domain. Several discrete versions 
of PSO round off floating point location values and store dis-
crete integer values for the clusters’ locations. In this study, 
we have modified the equation employed to preserve the sto-
chastic nature of the continuous PSO, as expressed by (9):

The multi-objective optimization issue considers an opti-
mization vector, that is, nobi (here, the objective function is 
F(x) = f1(x), f2(x), …, fnobi(x)). The Pareto optimality is easy to 
solve and produces an individual solution to the problem. The 
bi-objective optimization problem is expressed as follows:.

where θ is the relative weight in the range [0, 1]. The optimiza-
tion problem minimizes the distance fn when θ = 0. The problem 
reduces time fn when θ = 1. To allocate the power equally to co-
operative individuals, Pareto optimality uses the PSO algorithm.

4.3  |  Nash equilibrium using PSO

This section describes the PSO-based Nash equilibrium al-
gorithm for allocating power to secondary clusters (noncoop-
erative) in the MIMO network system.

4.3.1  |  Nash equilibrium

The various channel matrices are structured based on the 
Kronecker propagation model for considering the antenna 
correlation effects in the transmitter. The channel coefficient 
specified in (1) is expressed as

where the independent and identically distributed matrix is 
represented as Hw and the antenna correlation matrices in the 
receiver and transmitter are represented as rr and rt.

Equation  (12) expresses the signal received by the pri-
mary user:

where the channel coefficient is hp, signal from the primary user 
transmitter is represented as sp, and AWGN is represented as np.

Equation (13) represents the SINR (A) of the kth second-
ary user.

where the beam-forming matrix is fk, the power allocated for 
the transmitted signals is pk, and the variance of noise is �2

k
. The 

primary user's SINR is expressed as follows:

The condition that the secondary user's SINR should be 
greater than the threshold (γk) is expressed as (15), which is 
used for ensuring the MIMO radar network performance:

The perceived interference in the primary user should not 
be greater than the threshold value 

(
Ith

)
, which is expressed 

in (16). This condition is used to enhance the performance of 
the primary user:

The noncooperative game formulated in (17) is obtained 
based on the above system model.
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(17)G=
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Ω
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}
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,
{
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}
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}
.

Algorithm: Particle Swarm Optimization

1:  Initial populationP←

2: Evaluate (P)

3: Initialize  and bestp bestg

 and bestp bestg

4: While termination criterion not met do 

5: Update velocity (V) as denoted in (1)

6: Update position (P) as denoted in (2)

7: Evaluate (P)

8: Find 

9: End while

10: Output bestg
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The game strategies used by the players are transmitting 
power and beam-forming weights. The mutual information 
contained in (18) is used to design the utility function:

The payoff function mentioned in (18) results in inade-
quate outcome because of the greediness. The reason is that 
each player of the game concentrates only on increasing its 
own utility without mitigating the interference that occurs 
through the primary user. Therefore, the modified utility 
function of the secondary user, expressed as (19), is used to 
enhance the system performance:

Existence of Nash equilibrium
Nash equilibrium is considered as the optimal criterion for 
analyzing a game. At the point of Nash equilibrium, no player 
can maximize its effectiveness by varying its own strategy, 
and each player is unilaterally optimal. The noncooperative 
game theory attains the Nash equilibrium point when the fol-
lowing conditions are satisfied based on fundamental game 
theory results:

•	 The strategies set are closed in the bounded convex set.
•	 The utility function used in the system is continuous, qua-

siconcave in the action space.

Subsequently, this KFCM-PONE-PSO verifies whether 
the above conditions are satisfied or not. The first condi-
tion is satisfied because of the limited strategies of the kth 
secondary users pk and fk. Therefore, the KFCM-PONE-
PSO is tested to check whether it satisfies the second 
condition or not. Equations (20) and (21) are obtained by 
identifying the second derivative uk (. ) based on power and 
beam-forming:

The verification of �2uk∕
[
||fk||

2
]2

 and �2uk∕�
[
||fk||

2
]2

 is 
easy, as it indicates that the utility function is complex. 
Accordingly, these utility functions satisfy the required con-
ditions for the existence of at least one Nash equilibrium with 
respect to the noncooperative game with pricing scheme. 
This Nash equilibrium is used only for the radars present in 

the noncooperative network. Thereafter, the PSO is used to 
obtain the minimum least power with minimum distance for 
the radars present in the noncooperative clusters.

4.3.2  |  PSO-based power allocation using 
Nash equilibrium for secondary clusters

In this study, we used the floating number matrix to represent 
the power allocation plan. The utility function is defined to 
optimize distance, execution time, and power consumption. 
Next, the utility function is used to further represent the fit-
ness function of PSO. The position and velocity of the parti-
cles are initialized based on the radar location and its speed, 
respectively. Moreover, this PSO considers only the radars 
that are present in the noncooperative clusters. We used a 
matrix Xm,l to code the position or location of a cluster, as 
expressed in (22):

where xi
j
 is the probability of the ith selected task and jth coali-

tion; xi
1
+xi

2
+⋯+xi

l
=1. For resolving the Nash equilibrium of 

the mixed strategies, every task ti is allocated to some coalitions 
according to the mixed strategy xi =

(
xi

1
, xi

2
, . . . , xi

l

)
. In this 

case, research is required to change the utility function of pure 
strategies and the expected utility function is expressed as 
follows:

To update the status of the coalition after a task is as-
signed, the following expression is used:

The fitness function of the PSO is expressed as follows:
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In (8), the fitness function value of X is zero when X 
is equal to the best solution X∗. In each cycle, the clusters 
inform themselves by tracking two types of extreme values 
such as the optimal solution of the each cluster, denoted by 
Xi

lBest
, and the global optimal solution of the entire cluster, 

represented by Xi
gBest

. During the cycle of PSO, (27) and 
(28) update the velocity and location or position of the ith 
cluster:

Here, Vi
k
(t) is the speed of the ith cluster during the kth iter-

ation, Xi
t
(t) is the position of ith cluster during the kth iteration, 

Xi
lBest

 is the current local optimal solution of the ith cluster, 
Xi

gBest
 represents the current global optimal solution of the en-

tire cluster, r1 and r2 are random numbers between 0 to 1, c1 
and c2 are learning factors, and w is the inertia weight, which 
is a linearly reducing weight that reduces from wmax and wmin 
to allocate equal power to noncooperative individuals using 
Nash equilibrium with the PSO algorithm. The experimental 
analysis of the proposed KFCM- PONE-PSO method is dis-
cussed in Section 5.

5  |   RESULT AND DISCUSSION

In this section, we describe the simulation and numeri-
cal consequences of implementing the convergence of the 
KFCM- PONE-PSO method to a unique solution and dem-
onstrate the distributive structure of the MIMO network. The 
proposed KFCM-PONE-PSO method is simulated using the 
MATLAB 2018a software tool with 64 GB random access 
memory (RAM). This method is tested with 32 MIMO radars 

deployed in the test area, and these radars are clustered using 
KFCM. Initially, 0.5 J of energy is provided to each MIMO 
radar. The specifications of the MIMO radar system are pre-
sented in Table 1.

5.1  |  Performance analysis of KFCM-
PONE-PSO

In this section, the performance analysis of KFCM-PONE-
PSO is described in terms of power allocation and SINR. 
Moreover, the node deployment, target detection, and clas-
sification of clusters are illustrated in the following section.

Figure  3 represents MIMO radar deployment with tar-
get. Target detection based on the generalized likelihood 
ratio test is depicted in Figure 4. Figure 5 represents the pri-
mary and secondary cluster classification of MIMO radars. 
The distance from the radars to the target is used to classify 
MIMO radars. In Figure 5, the blue and green colors indicate 

(27)
Vi

k
(t+1) =w∗Vi

k
(t)+c1 ∗ r1 ∗

(
Xi

lBest
−Xi

k
(t)
)

+c2 ∗ r2 ∗
(

Xi
gBest

−Xi
k
(t)
)

,

(28)Xi
k
(t+1)=Vi

k
(t+1)+Xi

k
(t) .

T A B L E  1   Simulation parameters of MIMO radar system

 Simulation parameters Value/type

Initial power 0.5 J

Number of antennas 4

Motion model Velocity

Operating frequency 300 MHz

Sample rate 300 kbps

Peak power 2000

Gain 20

Pulse width 6.67e–06

Envelope Rectangular

Loss factor 0

Temperature 36 °C

F I G U R E  3   MIMO radar deployment with target
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F I G U R E  4   Target detection using generalized likelihood ratio 
test
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the primary and secondary clusters in the MIMO network, 
respectively.

Figure 6 presents the power consumption for both the pri-
mary and secondary cluster networks. The power consump-
tion of the radar network is stable at 0.2 J from the 10th to 
the 100th iteration. Figure 7 presents the power consumption 
of the secondary cluster, which is obtained based on k-means 
clustering and distance analysis. The power consumption of 
the secondary cluster is identified after the power allocation 
of game theory using SINR measures.

The power consumption of the distributive cluster is 
identified after the power allocation of game theory using 
SINR measures, which is presented in Figure 8. Here, each 
radar is required to perform optimization to achieve the PA 
value. An optimal response function is improved by estimat-
ing the SINR factor using the noise variance of intercluster 
interference.

Figure 9 presents the power allocation of the MIMO net-
work (when K (cluster) = 2 and M (user) = 2 (P1 = 0.01 × 1M, 
P2 = 0.02 × 1M)). Figure 10 presents the power allocation of 

F I G U R E  5   Distance-based primary and secondary cluster 
classification
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F I G U R E  6   Power consumption of entire MIMO network
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F I G U R E  7   Power consumption of secondary cluster
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F I G U R E  8   SINR of MIMO network

0 10 20 30 40 50

Number of Iteration

0

5

10

15

20

SI
N

R
 (d

B
)

Radar 1

Radar 2

Radar 3

Radar 4

F I G U R E  9   Power allocation of MIMO network (when K = 2 and 
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the MIMO network (when K = 2 and M = 6 (P1 = 0.01 × 1M, 
P2 = 0.02 × 1M)). Figure 11 presents the power allocation of 
the MIMO network (when K = 2 and M = 3 (P1 = 0.01 × 1M, 
P2 = 0.02 × 1M)). The proposed KFCM-PONE-PSO method 
can minimize the power in a totally distributed manner with-
out the need for any communication among the clusters. The 
problem of PA is particularly of interest in tracking radars; 
this study helps to analyze the location of the target accu-
rately. In this way, the proposed approach obtained the opti-
mum PA to maintain a specific SINR.

Figures 9–11 present the PA update of the entire MIMO 
radar network for two different initial PAs in clusters 2 and 
3. From this simulation result, it is evident that the number 
of active radars in both the clusters are the same, regardless 
of the initial PA. The efficiency of the KFCM-PONE-PSO 
method illustrates that the process converges to the optimal 
PA within six iterations.

5.2  |  Performance analysis with dissimilar 
optimization methods

The performance of the KFCM-PONE-PSO method is 
analyzed in terms of SINR and transmitted power. In ad-
dition, the performance of the KFCM-PONE-PSO method 
is validated using three conventional methods, namely, 
the KFCM-PONE, KFCM-PONE-cuckoo search (CS), 
and KFCM-PONE-genetic algorithm (GA) methods. 
These three algorithms are implemented and simulated 
in MATLAB with the same specifications mentioned in 
Table 1. The results are obtained for four different radars 
that are deployed in four various locations of the search 
area. Further, the performance analysis is carried out for 
two different cases. In the first case, the target is located 
in the selected 2D plane, that is, in (X, Y), (Y, Z), or (X, 
Z). Meanwhile, in the second case, the target is randomly 
moved in any one direction, that is, in the X, Y, or Z direc-
tion, with minimal speed.

•	 Case 1: The target is located at [0, 0] of the selected 2D 
plane.

•	 Case 2: The target is randomly moving in the selected 
2D plane.

Figure 12 presents the comparison of SINR for KFCM-
PONE-PSO with those for conventional methods such as 
KFCM-PONE, KFCM-PONE-CS, and KFCM-PONE-GA. 
Figure 12A,B depict that the SINR of the KFCM-PONE-PSO 
is less than that of the conventional methods in Cases 1 and 
2, respectively. The KFCM-PONE-PSO has low SINR in the 
MIMO radar network owing to PSO’s higher search probabil-
ity in the global solution. However, the GA used in KFCM-
PONE-GA cannot handle the huge number of constraints in 
the search area and the CS used in KFCM-PONE-CS has 
slow convergence. Owing to these properties, the KFCM-
PONE, KFCM-PONE-CS, and KFCM-PONE-GA methods 
produce high SINR during data transmission through the 
MIMO radar network.

A comparison of the transmitted power for the KFCM-
PONE-PSO and conventional methods is presented in 
Figure 13; the comparisons for Cases 1 and 2 are depicted 
in Figure 13A and 13B, respectively. Figure 13 indicates that 
the KFCM-PONE-PSO method has less transmitted power 
when compared with conventional methods. Owing to faster 
convergence of the PSO, the optimal solution is achieved 
during the power allocation of the radars. Thus, it leads to a 
reduction in the transmitted power in the multistatic MIMO 
radar network. In the KFCM-PONE-CS method, the CS falls 
in the local optimal solution during power allocation to the 
MIMO radars. Moreover, GA leads to an undirected search 
toward the solution in power allocation. The inappropriate 
characteristics of the KFCM-PONE, KFCM-PONE-CS, and 
KFCM-PONE-GA methods fail to perform an appropriate 

F I G U R E  1 0   Power allocation of MIMO network (when K = 2 
and M = 6(P1 = 0.01 × 1M, P2 = 0.02 × 1M)
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power allocation. However, there is a higher probability of 
discovering the optimal solution with the PSO used in the 
KFCM-PONE-PSO method. Therefore, the KFCM-PONE-
PSO method effectively allocates optimum power to the ra-
dars. This allocation achieves less transmitted power in the 
multistatic MIMO radar network.

5.3  |  Comparative analysis

This section presents a comparative study of the exist-
ing works and the proposed KFCM-PONE-PSO method. 
Table 2 presents the total power consumption in each cluster 
for three different system realizations. The main aim of the 

F I G U R E  1 2   Comparison of SINR for KFCM-PONE-PSO with conventional methods: (A) Case 1 and (B) Case 2
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F I G U R E  1 3   Comparison of transmitted power for KFCM-PONE-PSO with conventional methods: (A) Case 1 and (B) Case 2
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T A B L E  2   Total power consumption in each cluster for three different system realizations

Methodologies K = 2, M = 2 K = 2, M = 6 K = 3, M = 3 K = 2, M = 30

GNG-PA [6] 0.0763 0.0418 0.1382 0.1389 0.0641 0.1191 0.0895 N/A N/A

CNCGT-PA [29] 0.0698 0.0384 N/A N/A 0.0599 0.1167 0.0869 N/A N/A

KFCM-PONE-PSO 0.0558 0.0297 0.1121 0.1114 0.0480 0.1001 0.0831 0.8576 0.5885
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generalized Nash game based power allocation (GNG-PA) 
[6] is to secure a certain criterion in each cluster to reduce the 
SINR while allocating the minimum possible power to every 
radar. The GNS illustrated that if the number of active radars 
in a cluster that specify the transmitted signals are similar to 
the number of radars in a similar cluster, it satisfies the SINR 
with equality.

Cooperative and noncooperative game theory based 
PA (CNCGT-PA) [29]—the game theory of Nash equilib-
rium and Pareto optimality—is implemented for noncoop-
erative and cooperative networks of distributive clusters, 
respectively. The clustering of the network is carried out 
using KFCM. Table  2 indicates that the KFCM-PONE-
PSO method of cluster 1 produces a power consumption of 
0.05, which is less compared to the power allocation using 
GNG-PA and CNCGT-PA, that is, 0.0763 and 0.0698, at 
K = 2, M = 2. The power consumption obtained using the 
KFCM-PONE-PSO method for cluster 1 is 0.1121, which is 
less compared to the power allocation using GNG-PA, that 
is, 0.1382, at K = 2, M = 6. The power consumption obtained 
using the KFCM-PONE-PSO for cluster 1 is 0.0480, which 
is less compared to the power allocation using GNG-PA and 

CNCG-PA, that is, 0.0641 and 0.0599, at K = 3, M = 3. The 
proposed game theoretic technique outperforms the uniform 
PA in all cases in terms of total power consumption in each 
cluster. Thus, it is clear that the power is properly allocated 
to the entire MIMO radar network using the KFCM-PONE-
PSO method.

Table  3 presents a comparison of the transmitted power 
using the KFCM-PONE-PSO and NBS methods [23]. 
Figure 14A,B present the transmitted power for Cases 1 and 
2, respectively. Table 3 and Figure 14 indicate that the trans-
mitted power for both the cases are less when compared with 
NBS-based power allocation [23]. For example, the trans-
mitted power using the KFCM-PONE-PSO methodology for 
Case 1 is 50 W–55 W, which is less when compared with NBS 
(ie, 70  W–75  W). Similarly, the transmit power of KFCM-
PONE-PSO for Case 2 is that is less when compared NBS 
(ie, 20 W–300 W). The reason why the KFCM-PONE-PSO 
method produces less transmitted power in the multistatic 
MIMO radar network is an appropriate optimization of power 
allocation to all the radars in the network. Thus, optimal power 
allocation to the radars is obtained using the combination of 
Nash equilibrium and Pareto optimality with PSO.

T A B L E  3   Comparison of transmitted power using KFCM-PONE-PSO and NBS [23] methods

Index of radars

Transmitted power (W)

Case 1 Case 2

NBS [23] KFCM-PONE-PSO NBS [23] KFCM-PONE-PSO

1 75.223 55.127 120.223 48.127

2 75.2231 50.184 20.2231 10.184

3 75.4245 52.162 120.4245 25.162

4 75.24 54.18 310.24 51.18

F I G U R E  1 4   Transmitted power: (A) Case 1 and (B) Case 2
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6  |   CONCLUSION

In this study, the Nash equilibrium and Pareto optimality–based 
game theories were introduced in the MIMO radar network to 
allocate power for each antenna of the distributed MIMO radar 
cluster. These game theories were applied to the distributive 
network based on the distance from the MIMO radars to the 
target. The allocated power values depended mainly on the 
distance from the MIMO radars to the target and the power 
value of each radar. Subsequently, the optimal power value 
was selected for each antenna and the selected power was allo-
cated to the MIMO radar. This type of PA led to the reduction 
of the power consumption of the entire MIMO network. The 
simulation results proved that the KFCM-PONE-PSO method 
achieves better performance than conventional methods. For 
example, the transmitted power using the KFCM-PONE-PSO 
method for the first radar in Case 1 was 55.127 W, which is 
less when compared with the NBS method. In future research, 
relay resource allocation based on the Bayesian game and bio-
inspired algorithm can be developed to enhance the perfor-
mance of multiple users in MIMO radar networks.
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