• Title/Summary/Keyword: sparse signal

Search Result 124, Processing Time 0.024 seconds

Design of FIR Filters With Sparse Signed Digit Coefficients (희소한 부호 자리수 계수를 갖는 FIR 필터 설계)

  • Kim, Seehyun
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.342-348
    • /
    • 2015
  • High speed implementation of digital filters is required in high data rate applications such as hard-wired wide band modem and high resolution video codec. Since the critical path of the digital filter is the MAC (multiplication and accumulation) circuit, the filter coefficient with sparse non-zero bits enables high speed implementation with adders of low hardware cost. Compressive sensing has been reported to be very successful in sparse representation and sparse signal recovery. In this paper a filter design method for digital FIR filters with CSD (canonic signed digit) coefficients using compressive sensing technique is proposed. The sparse non-zero signed bits are selected in the greedy fashion while pruning the mistakenly selected digits. A few design examples show that the proposed method can be utilized for designing sparse CSD coefficient digital FIR filters approximating the desired frequency response.

Direction of Arrival Estimation under Aliasing Conditions (앨리아싱 조건에서의 광대역 음향신호의 방위각 추정)

  • 윤병우
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.1-6
    • /
    • 2003
  • It is difficult to detect and to track the moving targets like tanks and diesel vehicles due to the variety of terrain and moving of targets. It is possible to be happened the aliasing conditions as the difficulty of antenna deployment in the complex environment like the battle fields. In this paper, we study the problem of detecting and tracking of moving targets which are emitting wideband signals under severe spatial aliasing conditions because of the sparse arrays. We developed a direction of arrival(DOA) estimation algorithm based on subband MUSIC(Multiple Signal Classification) method which produces high-resolution estimation. In this algorithm, the true bearings are invariant regardless of changes of frequency bands while the aliased false bearings vary. As a result, the proposed algorithm overcomes the aliasing effects and improves the localization performance in sparse passive arrays.

  • PDF

Development of A Recovery Algorithm for Sparse Signals based on Probabilistic Decoding (확률적 희소 신호 복원 알고리즘 개발)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.5
    • /
    • pp.409-416
    • /
    • 2017
  • In this paper, we consider a framework of compressed sensing over finite fields. One measurement sample is obtained by an inner product of a row of a sensing matrix and a sparse signal vector. A recovery algorithm proposed in this study for sparse signals based probabilistic decoding is used to find a solution of compressed sensing. Until now compressed sensing theory has dealt with real-valued or complex-valued systems, but for the processing of the original real or complex signals, the loss of the information occurs from the discretization. The motivation of this work can be found in efforts to solve inverse problems for discrete signals. The framework proposed in this paper uses a parity-check matrix of low-density parity-check (LDPC) codes developed in coding theory as a sensing matrix. We develop a stochastic algorithm to reconstruct sparse signals over finite field. Unlike LDPC decoding, which is published in existing coding theory, we design an iterative algorithm using probability distribution of sparse signals. Through the proposed recovery algorithm, we achieve better reconstruction performance as the size of finite fields increases. Since the sensing matrix of compressed sensing shows good performance even in the low density matrix such as the parity-check matrix, it is expected to be actively used in applications considering discrete signals.

Analysis of Signal Recovery for Compressed Sensing using Deep Learning Technique (딥러닝 기술을 활용한 압축센싱 신호 복원방법 분석)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.4
    • /
    • pp.257-267
    • /
    • 2017
  • Compressed Sensing(CS) deals with linear inverse problems. The theoretical results of CS have had an impact on inference problems and presented amazing research achievements in the related fields including signal processing and information theory. However, in order for CS to be applied in practical environments, there are two significant challenges to be solved. One is to guarantee in real time recovery of CS signals, and the other is that the signals have to be sparse. To this end, the latest researches using deep learning technology have emerged. In this paper, we consider CS problems based on deep learning and discuss the latest research results. And the approaches for CS signal reconstruction using deep learning show superior results in terms of recovery time and performance. It is expected that the approaches for CS reconstruction using deep learning shown in recent studies can not only raise the possibility of utilization of CS, but also be highly exploited in the fields of signal processing and communication areas.

A Compressed Sensing-Based Signal Recovery Technique for Multi-User Spatial Modulation Systems (다중사용자 공간변조시스템에서 압축센싱기반 신호복원 기법)

  • Park, Jeonghong;Ban, Tae-Won;Jung, Bang Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.424-430
    • /
    • 2014
  • In this paper, we propose a compressed sensing-based signal recovery technique for an uplink multi-user spatial modulation (MU-SM) system. In the MU-SM system, only one antenna among $N_t$ antennas of each user becomes active by nature. Thus, this characteristics is exploited for signal recovery at a base station. We modify the conventional orthogonal matching pursuit (OMP) algorithm which has been widely used for sparse signal recovery in literature for the MU-SM system, which is called MU-OMP. We also propose a parallel OMP algorithm for the MU-SM system, which is called MU-POMP. Specifically, in the proposed algorithms, antenna indices of a specific user who was selected in the previous iteration are excluded in the next iteration of the OMP algorithm. Simulation results show that the proposed algorithms outperform the conventional OMP algorithm in the MU-SM system.

Acoustic Signal Classifier Design using Dictionary Learning (딕셔너리 러닝을 이용한 음파 신호 분류기 설계)

  • Park, Sung Min;Sah, Sung Jin;Oh, Kwang Myung;Lee, Hui Sung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2016
  • As new car technology is developing, temporal interaction is needed in automotive. Rhythmic pattern is one of the practical examples of temporal interaction in vehicle. To recognize rhythmic pattern and its input medium, dictionary learning is applicable algorithm. In this paper, performance and memory requirement of the learning algorithm is tested and is sufficiently good for use this acoustic sound.

Off-grid direction-of-arrival estimation for wideband noncircular sources

  • Xiaoyu Zhang;Haihong Tao;Ziye, Fang;Jian Xie
    • ETRI Journal
    • /
    • v.45 no.3
    • /
    • pp.492-504
    • /
    • 2023
  • Researchers have recently shown an increased interest in estimating the direction-of-arrival (DOA) of wideband noncircular sources, but existing studies have been restricted to subspace-based methods. An off-grid sparse recovery-based algorithm is proposed in this paper to improve the accuracy of existing algorithms in low signal-to-noise ratio situations. The covariance and pseudo covariance matrices can be jointly represented subject to block sparsity constraints by taking advantage of the joint sparsity between signal components and bias. Furthermore, the estimation problem is transformed into a single measurement vector problem utilizing the focused operation, resulting in a significant reduction in computational complexity. The proposed algorithm's error threshold and the Cramer-Rao bound for wideband noncircular DOA estimation are deduced in detail. The proposed algorithm's effectiveness and feasibility are demonstrated by simulation results.

Why Gabor Frames? Two Fundamental Measures of Coherence and Their Role in Model Selection

  • Bajwa, Waheed U.;Calderbank, Robert;Jafarpour, Sina
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.289-307
    • /
    • 2010
  • The problem of model selection arises in a number of contexts, such as subset selection in linear regression, estimation of structures in graphical models, and signal denoising. This paper studies non-asymptotic model selection for the general case of arbitrary (random or deterministic) design matrices and arbitrary nonzero entries of the signal. In this regard, it generalizes the notion of incoherence in the existing literature on model selection and introduces two fundamental measures of coherence-termed as the worst-case coherence and the average coherence-among the columns of a design matrix. It utilizes these two measures of coherence to provide an in-depth analysis of a simple, model-order agnostic one-step thresholding (OST) algorithm for model selection and proves that OST is feasible for exact as well as partial model selection as long as the design matrix obeys an easily verifiable property, which is termed as the coherence property. One of the key insights offered by the ensuing analysis in this regard is that OST can successfully carry out model selection even when methods based on convex optimization such as the lasso fail due to the rank deficiency of the submatrices of the design matrix. In addition, the paper establishes that if the design matrix has reasonably small worst-case and average coherence then OST performs near-optimally when either (i) the energy of any nonzero entry of the signal is close to the average signal energy per nonzero entry or (ii) the signal-to-noise ratio in the measurement system is not too high. Finally, two other key contributions of the paper are that (i) it provides bounds on the average coherence of Gaussian matrices and Gabor frames, and (ii) it extends the results on model selection using OST to low-complexity, model-order agnostic recovery of sparse signals with arbitrary nonzero entries. In particular, this part of the analysis in the paper implies that an Alltop Gabor frame together with OST can successfully carry out model selection and recovery of sparse signals irrespective of the phases of the nonzero entries even if the number of nonzero entries scales almost linearly with the number of rows of the Alltop Gabor frame.

Image Denoising for Metal MRI Exploiting Sparsity and Low Rank Priors

  • Choi, Sangcheon;Park, Jun-Sik;Kim, Hahnsung;Park, Jaeseok
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.215-223
    • /
    • 2016
  • Purpose: The management of metal-induced field inhomogeneities is one of the major concerns of distortion-free magnetic resonance images near metallic implants. The recently proposed method called "Slice Encoding for Metal Artifact Correction (SEMAC)" is an effective spin echo pulse sequence of magnetic resonance imaging (MRI) near metallic implants. However, as SEMAC uses the noisy resolved data elements, SEMAC images can have a major problem for improving the signal-to-noise ratio (SNR) without compromising the correction of metal artifacts. To address that issue, this paper presents a novel reconstruction technique for providing an improvement of the SNR in SEMAC images without sacrificing the correction of metal artifacts. Materials and Methods: Low-rank approximation in each coil image is first performed to suppress the noise in the slice direction, because the signal is highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-Markov or weighted least squares. Noise levels and correlation in the receiver channels are considered for the sake of SNR optimization. To this end, since distorted excitation profiles are sparse, $l_1$ minimization performs well in recovering the sparse distorted excitation profiles and the sparse modeling of our approach offers excellent correction of metal-induced distortions. Results: Three images reconstructed using SEMAC, SEMAC with the conventional two-step noise reduction, and the proposed image denoising for metal MRI exploiting sparsity and low rank approximation algorithm were compared. The proposed algorithm outperformed two methods and produced 119% SNR better than SEMAC and 89% SNR better than SEMAC with the conventional two-step noise reduction. Conclusion: We successfully demonstrated that the proposed, novel algorithm for SEMAC, if compared with conventional de-noising methods, substantially improves SNR and reduces artifacts.

Compressive Sensing for MIMO Radar Systems with Uniform Linear Arrays (균일한 선형 배열의 다중 입출력 레이더 시스템을 위한 압축 센싱)

  • Lim, Jong-Tae;Yoo, Do-Sik
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.1
    • /
    • pp.80-86
    • /
    • 2010
  • Compressive Sensing (CS) has been widely studied as a promising technique in many applications. The CS theory tells that a signal that is known to be sparse in a specific basis can be reconstructed using convex optimization from far fewer samples than traditional methods use. In this paper, we apply CS technique to Multiple-input multiple-output (MIMO) radar systems which employ uniform linear arrays (ULA). Especially, we investigate the problem of finding the direction-of-arrival (DOA) using CS technique and compare the performance with the conventional adaptive MIMO techniques. The results suggest the CS method can provide the similar performance with far fewer snapshots than the conventional adaptive techniques.