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Image Denoising for Metal MRI 
Exploiting Sparsity and Low Rank Priors

INTRODUCTION

Metal-induced field inhomogeneity is one of the major concerns in magnetic 
resonance imaging (MRI) near metallic implants. For distortion-free MRI with metallic 
implants, a number of sequence techniques have been reported in the MRI literature 
to recover artifacts such as signal loss and distortion in the images. To reduce in-
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Purpose: The management of metal-induced field inhomogeneities is one of the 
major concerns of distortion-free magnetic resonance images near metallic implants. 
The recently proposed method called “Slice Encoding for Metal Artifact Correction 
(SEMAC)” is an effective spin echo pulse sequence of magnetic resonance imaging 
(MRI) near metallic implants. However, as SEMAC uses the noisy resolved data 
elements, SEMAC images can have a major problem for improving the signal-to-
noise ratio (SNR) without compromising the correction of metal artifacts. To address 
that issue, this paper presents a novel reconstruction technique for providing an 
improvement of the SNR in SEMAC images without sacrificing the correction of 
metal artifacts.
Materials and Methods: Low-rank approximation in each coil image is first 
performed to suppress the noise in the slice direction, because the signal is 
highly correlated between SEMAC-encoded slices. Secondly, SEMAC images are 
reconstructed by the best linear unbiased estimator (BLUE), also known as Gauss-
Markov or weighted least squares. Noise levels and correlation in the receiver 
channels are considered for the sake of SNR optimization. To this end, since distorted 
excitation profiles are sparse, l1 minimization performs well in recovering the sparse 
distorted excitation profiles and the sparse modeling of our approach offers excellent 
correction of metal-induced distortions.
Results: Three images reconstructed using SEMAC, SEMAC with the conventional 
two-step noise reduction, and the proposed image denoising for metal MRI exploiting 
sparsity and low rank approximation algorithm were compared. The proposed 
algorithm outperformed two methods and produced 119% SNR better than SEMAC 
and 89% SNR better than SEMAC with the conventional two-step noise reduction.
Conclusion: We successfully demonstrated that the proposed, novel algorithm for 
SEMAC, if compared with conventional de-noising methods, substantially improves 
SNR and reduces artifacts.
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plane distortion with metallic implants, view angle tilting 
(VAT) (1) spin echo sequence uses a gradient on the slice 
select axis during readout gradient. The selected slice is 
successfully viewed at an angle that compensates for the 
distortion during readout gradient. However, VAT leads 
to the penalty of blurring due to the modulation of the 
k-space related to the excited profile. In three-dimensional 
(3D) MRI near metallic implants, multi-acquisition variable-
resonance image combination (MAVRIC) (2) minimizes 
artifacts by limiting the excited bandwidth and then uses 
multiple resonance frequency offset acquisitions to cover 
the full spectral range. MAVRIC has good signal-to-noise 
ratio (SNR), but requires long scan times. Slice encoding 
for metal artifact correction (SEMAC) (3) corrects severe 
metal artifacts by employing additional z-phase encoding 
steps for each excited slice against metal-induced field 
inhomogeneity and VAT. SEMAC is effective with superior 
metal artifact reduction. Despite the advantages of metal 
artifact correction, since noisy resolved pixels are included 
in image reconstruction, SEMAC suffers from noise 
amplification.

To solve this problem, SEMAC with noise reduction (4) has 
been proposed. This method employs a two-step approach 
(rank-1 approximation along the coil dimension (c) followed 
by soft thresholding in the slice direction), but does not 
consider noise correlation of coils and results in a direct 
tradeoff between image accuracy and denoising. Thus, to 
further expedite noise reduction in SEMAC, in this work we 
develop a novel image de-noising algorithm that exploits 
1) low-rank approximation using strong correlation of 
pixels (x-z) in the slice direction (s), 2) best linear unbiased 
estimator (BLUE) image combination in the coil direction 
with noise correlation, and 3) recovery of distorted slice 
profile using the sparsity of signals in the slice direction 
with orthogonal matching pursuit (OMP).

The proposed method - Image denoising for metal 
MRI exploiting sparsity and low-rank priors in SEMAC- 
sequentially optimizes multi-dimensional SEMAC data 
(x-y-z-coil-slice) fidelity constraints and high sparsity of 
distorted slice profiles while preserving the SEMAC-resolved 
data by solving the constrained optimization problems. 
The resulting algorithm is compared against turbo spin 
echo (TSE) alone and the conventional two-step approach 
proposed by Lu et al. (4), to measure the improvement 
possible from combining these three different sequential 
processes.

MATERIALS AND METHODS

SEMAC and Image Reconstruction
In 3D MRI, the 3D volume can be separately divided 

into multiple 2D slices in the readout direction. SEMAC 
rearranges resolved excitation profiles to correct metal-
induced distortions acquiring additional z-phase encoding 
steps in each slice position. Denote the excitation 
magnetization ρe  (x,z), the metal-induced inhomogeneity 
∆f(x,z), the z-phase encoding steps zn, the nth incremental 
gradient amplitude Gzn, the VAT-compensation gradients 
Gs, and each duration tx, ts, Tzn, the measured k-space signal 
Sn(kx,ks,kzn) with the coil sensitivity C(x,z) at nth z-phase 
encoding step is given by

Sn(kx,ks,kzn) =∫∫dxdzρe  (x,z)C(x,z)exp
z x

[-i(kxx+ksz+2π∆f(x,z)tx)]xexp(-ikznz)               [1]

where kx=γGxtx, ks=γGsts and kzn=γGznTzn. To satisfy VAT-
compensation condition, ts should be identical to tx. 
VAT suppresses in-plane distortion of metallic implants 
exploiting a gradient on the slice select axis during readout 
gradient. From Eq. [1], one of the multiple z-phase encoding 
steps has its own signal, whereas the others of the different 
z-phase encoding steps have signal void in the same slice 
position. Therefore, multiple resolved data elements are 
required to preserve their own signal and metal-induced 
artifacts can be corrected via aligning them to their actual 
voxel location. To correct through-plane distortions with 
metal-induced field inhomogeneities, SEMAC uses a linear 
complex sum integrating the resolved excitation profiles in 
the slice direction. By manipulating all actual signals into 
place, 3D distortion-free images can finally be acquired. 
Despite the advantages of metal artifact correction, since 
noisy resolved pixels are included in image reconstruction, 
SEMAC suffers from noise amplification. To address that 
issue, the proposed algorithm allows combining the two 
most important attributes of SEMAC data characteristics: 
correlation and sparsity within the resolved excitation 
profiles.

Low-rank Approximation for Matrix Recovery
In SEMAC data acquisition, the measured signal Y can be 

represented in the vector form as

Y = FP+w               [2]
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where F is Fourier transform operator, P is slice profile 
Images, and w is noise. Figure 1, illustrates fully described 
multi-dimensional SEMAC data which consist of the 
readout direction x, the phase encoding direction y, the 
slice position direction z, the coil direction c and the slice 
direction s. Searching for low-rank data, c-s dimensional 
SEMAC data, shown in Figure 2a, can be made. Due to noise 
correlation of coils, singular values slowly decrease in Figure 
2c. Thus, it is not good approach in c-s dimension because 
there is a direct tradeoff between image accuracy and de-
noising. However, strong correlation of pixels exists in z-s 
dimensional SEMAC data for each coil. The pixels in the 
x-s dimension are arranged into a single vector: Pj=[ℓ(xj,s0 
),…,ℓ(xj,sn)]

H where xj is the jth pixel in the z direction, and 
sn is the nth pixel in the s direction. Figure 2b illustrates 
reduced data representation in the z-s dimension. To exploit 
the correlation of pixels (in xy-z) along the s direction, 
image pixels in spatiotemporal dimension are rearranged 
into a single matrix: L=[P0,…,Pm-1]

H where the rows of L 
correspond to the s direction and the columns of L to the 
z direction. The zeros in the L matrix are removed and the 
high SNR pixels are shifted to the center, yielding another 
permuted matrix Lp (Ns × Nz). In Figure 2c, singular values 
of z-s dimensional data decrease faster than them of c-s 
dimensional data. The few significant singular values imply 
that the dataset can be effectively approximated as a low-
rank matrix (5). Thus, singular value decomposition of the Lp 
followed by the low-rank approximation (6, 7) is performed 
by minimizing the following constrained optimization 
problem:

min‖FLp - Y‖2 s.t.rank(Lp)≤r               [3]

where F is a Fourier transformation operator and Y is 
the measured data. With the nuclear norm (8), Eq. [3] is 
replaced as 

Ľ=min‖FLp-Y‖2+λ‖Lp‖*
                   [4]

Since the cost function is strictly convex, it is easy to 
show that it exists a unique minimum value. Consequently, 
Ľ matrix means the recovery of low-rank Ľ matrix.

Best Linear Unbiased Estimator (BLUE)
Generally, BLUE (9) is an effective inverse problem 

method. BLUE is also called SENSE (sensitivity encoding) (10) 
which is an image-based reconstruction method in parallel 
MRI (pMRI) (11). Once noises are pre-processed in the xyz-s 
dimension, SEMAC data is optimally combined in the coil 
direction using BLUE with noise covariance of coils. The 
Gauss-Markov theorem states BLUE is defined as

ĽBLUE = (CHΨ-1C)-1CHΨ-1·Ľ               [5]

where Ψ is the noise covariance matrix, C is the coil 
sensitivity, and Ľ is the solution of the optimization problem 
in the low-rank approximation. In Eq. [5], Ψ is the noise 
covariance matrix means the levels and correlation of noise 
from the phase-array receiver channels to optimize SNR. 
BLUE exploits the noise covariance matrix to de-correlate 
noise. Figure 3 describes BLUE processing pipeline. Thus, 
given the explicit knowledge of noise covariance and coil 
sensitivity from the pre-scan, BLUE reconstruction enhances 
noise performance in the coil direction. ĽBLUE stands for the 
high-SNR image sequentially suppressed both noise along 

Fig. 1. Fully described multi-dimensional SEMAC (slice encoding for metal artifact correction) data representation.
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z-s dimension and c-s dimension.

Orthogonal Matching Pursuit (OMP) for Sparse 
Recovery

The recent theoretical result indicates that minimizing the 
l1 norm is optimal and readily recovers the sparse signals in 
some representation frames. As SEMAC data undergo the 
initial two pre-processing steps (low-rank approximation 
followed by BLUE), images are rarely contaminated by 
noises and highly sparse in the slice direction. That is 
image signals, which result from metal-induced field 
inhomogeneities, are disseminated to a limited number of 
resolved data elements. By solving the following constrained 
optimization problem:

min‖FzĽBlue‖1 s.t.‖FĽBLUE-Y‖2≤ε               [6]

where ĽBLUE indicates the noise-suppressed SEMAC 
images, sparse distorted slice profiles in SEMAC are 
recovered using compressive sensing algorithm (12-14).

Fig. 2. (a) Reduced data representation in the c-s dimension, (b) reduced data representation in the z-s dimension, (c) 
normalized singular values of (a) and (b).

a

b

c

Fig. 3. BLUE (best linear unbiased estimator) processing 
pipeline.
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To enhance sparsity, we apply a sparsifying transform, 
which is 1D Fourier transform along the z direction, in Eq. 
[6]. Roughly, sparse recovery algorithms are grouped into 
greedy-type algorithm (15, 16) and gradient-type algorithm 
(17) to minimize l1 norm. The recent research results 
indicate that a greedy-type algorithm called OMP (18, 19) 
is comparable for another algorithm called basis pursuit (BP) 
(20). BP means a principle of global optimization without 
any specific algorithm and finds signal representations 
in over-complete dictionaries by convex optimization. 

However, OMP is an improved version of matching pursuit 
(MP). An intrinsic feature of MP is that when stopped after 
a few steps, it yields an approximation exploiting only a 
few atoms, which means discrete-time signals of length 
n. When a collection of waveforms is orthogonal, OMP 
algorithm performs perfectly. Thus, the l1 minimization is 
performed using the OMP algorithm: It starts from an “empty 
model”, builds up a signal model, and picks up an atom at 
a time, which adds to the signal model the most important 
new atom. This iterative algorithm is converged until the 

Fig. 4. Pre-processing of noise using low-rank approximation. 1st row (no low rank processing): (a) peripheral slice, (b) 
intermediate, (c) central slice, (d) peripheral slice, 2nd row (c-s low rank processing): (e) peripheral slice, (f) intermediate, (g) 
central slice, (h) peripheral slice, 3rd row (z-s low rank processing): (i) peripheral slice, (j) intermediate, (k) central slice, (l) 
peripheral slice.

a

e

i j k l

f g h

b c d
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maximum residual signal in x-f domain reaches the noise 
level. OMP reliably recovers the distorted excitation profiles 
in x-f domain. Therefore, the final reconstructed image 
is acquired by inverse Fourier transform (IFT) along the z 
direction.  

Experimental Studies
Several experiments are performed qualitatively and 

quantitatively comparing the proposed algorithm with 
conventional TSE, SEMAC (3), two step noise reduction 
(4). To investigate the utility of the proposed algorithm, 
in vivo knee data is acquired in a volunteer with knee 
arthroplastics (pedicle screws) using 2D SEMAC imaging at 
a 1.5 tesla (T) whole-body MR scanner (Magnetom Avanto, 
Siemens Medical Solutions, Erlangen, Germany). 640 noise 
samples are acquired separately before actual imaging 
data acquisition. The imaging parameters are: matrix, 320 
x 320; FOV, 22 cm; z-phase encoding steps for SEMAC, 8; 
thickness, 3 mm; flip angle, 150°; effective TE, 36 ms; TR, 
3500 ms; number of slice, 24; and imaging time, 5.7 min. 
A 8-channel standard knee matrix coil is used for signal 
reception. The noise covariance matrix is estimated from 
additional noise scan. An off-line image reconstruction 
of the proposed algorithm for SEMAC is performed using 
Matlab programming environment (Math Works Inc., Natick, 

MA, USA). The free parameters for low rank and sparsity 
priors are empirically chosen. Each reconstructed image is 
evaluated qualitatively by comparing differently processing 
images and quantitatively by computing the peak-SNR 
(PSNR): 

PSNR =20log10

max(│reference│)
.

1/N∑││reconstructed image│ -│reference││2

  

[7]

The PSNR are computed from final composite magnitude 
images. As PSNR does not account for preserving important 
anatomic region of interest, the zoomed images are used 
to compare the relative performances of the proposed 
algorithm for SEMAC.

RESULTS

Figure 4 compares pre-processing knee images using low-
rank approximation. First row (a-d) is SEMAC without low-
rank approximation. Second row (e-h) is SEMAC with c-s 
low-rank approximation. Third row (i-l) is SEMAC with z-s 
low-rank approximation. In slice direction, four images, 

Fig. 5. BLUE (best linear unbiased estimator) processing. 1st row (z-s low-rank): (a) peripheral slice, (b) intermediate, (c) 
central slice, (d) peripheral slice 2nd row (z-s low-rank + BLUE): (e) peripheral slice, (f) intermediate, (g) central slice, (h) 
peripheral slice.

a

e f g h

b c d
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which are two peripheral (a, e, i, d, h, l), intermediate (b, f, 
j) and central slices (c, g, k), are selected to evaluate the 
effect of low-rank approximation. Two peripheral images 
represent the better effect of z-s low-rank approximation 
and central images represent the similar signal levels. 
The noise amplification in Figure 4 relatively decreases as 
the number of row increases. As expected, z-s low-rank 
approximation qualitatively outperforms two methods.

To further understand the denoising capabilities of BLUE 
processing, SNR-optimized coil combination is shown for 
another SEMAC slice profiles in Figure 5 Peripheral (a, e, d, 
h), intermediate (b, f) and central slices (c, g), are selected 

to evaluate the effect of BLUE in slice direction. First row 
illustrates one of coil images which are applied by z-s 
low-rank approximation. In Figure 5a, b and d still suffer 
from noise amplification, while Figure 5c has good noise 
reduction. However, Figure 5c doesn’t have enough signal 
intensity. In contrast, the images of second row are rarely 
contaminated by noise and image details are returned back. 
Roughly, e, f and h in Figure 5 have similar signal intensities 
while Figure 5g has both good noise reduction and signal 
levels. They also have equally anatomic structure except 
distorted excitation region. As a result, BLUE processing 
is effective to noise suppression and provides signal 

Fig. 6. Sparse recovery processing: (a) z-s low-rank + BLUE, (b) z-s low-rank + BLUE + OMP, (c) magnitude different image.

a b c

Fig. 7. Comparison of knee images reconstructed using (a) TSE (turbo spin echo), (b) SEMAC (slice encoding for metal 
artifact correction), (c) SEMAC (slice encoding for metal artifact correction) with the conventional two-step reduction, and (d) 
with the proposed algorithm.

a b c d
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enhancement. Generally, its performance depends on coil 
sensitivity information and noise covariance estimation. 
Thus, if the estimated noise covariance matrix is not 
available, BLUE processing may still be used to suboptimal 
results. 

As SEMAC data undergo the two pre-processing steps, 
low-rank approximation followed by BLUE, resulting 
images are rarely contaminated by noises and highly 
sparse in the slice direction. Figure 6 illustrates sparse 
recovery using iterative OMP algorithm. Figure 6a and b 
are similarly shown but Figure 6c means OMP performs 
well in recovering the sparse distorted excitation profiles. 
For OMP, the optimal thresholding value is chosen with 
the consideration of noise level. The optimal value for 
thresholding is decreased from central slice to peripheral 
slice in the slice direction because noise amplification and 
signal level worsen with the distance of central excitation 
slice. The magnitude difference image demonstrates that 
tuning thresholding value is empirically critical in obtaining 
desirable images.

With linear complex sum, multiple resolved excitation 
profiles change a composite SEMAC image without metal 
artifacts. Figure 7 compares four images reconstructed using 
TSE, SEMAC, SEMAC with two-step noise reduction, and 
the proposed algorithm. TSE with metallic implants suffers 
from severe metal artifacts and signal loss near metallic 
implants makes boundary of tissues near metallic implants 
ambiguous in Figure 7a. SEMAC corrects metal artifacts but 
the resulting image still has signal degradation in Figure 
7b. To tackle noise amplification, two-step noise reduction 
is introduced. However, noise is not suppressed enough in 
Figure 7c and computation time also increases with two-
step denoising. Figure 7d shows the proposed SEMAC image 
obtained from low-rank approximation, BLUE and iterative 
OMP algorithm. The proposed algorithm corrects severe 
metal artifacts and outperforms two methods and produces 
119% PSNR (23.6 dB) better than SEMAC (10.8 dB) and 
89% PSNR better than SEMAC with the conventional two-
step noise reduction (12.5 dB).

DISCUSSION

We successfully demonstrated that the proposed, novel 
algorithm for SEMAC, if compared with conventional 
denoising methods, substantially improves SNR and reduces 
artifacts. The proposed method is highly effective and 
promising for significant clinical impact in evaluation of 

millions of patients with metallic implants. 
SEMAC has shown effective performance in obtaining 

MR images near metallic implants with correcting metal-
induced distortion. Despite the advantages of metal artifact 
correction, since noisy resolved pixels are included in image 
reconstruction, SEMAC suffers from noise amplification and 
has long scan times depending on the additional z-phase 
encoding steps. To improve the SNR of SEMAC images, 
SEMAC with noise reduction (4) employs SVD-based 
denoising with low-rank approximation in the coil direction 
and soft-thresholding in the slice direction. However, this 
two-step approach does not consider noise correlation of 
coils (Fig. 2c) and results in a direct tradeoff between image 
accuracy and denoising performance. Although obtaining 
sparse signal recovery, soft-thresholding in image domain 
may fail to capture small detail in soft tissues. 

In the proposed, global two-step SEMAC denoising 
process, the BLUE image combination is followed by the 
low-rank approximation. The sequential order is chosen to 
effectively employ a noise statistic among receiver coils 
available prior to imaging while enhancing computational 
efficiency. Let the BLUE image combination in the coil 
direction be preceded by the low-rank approximation in the 
z-slice dimension. Then, the matrix LP, which results from 
the matrix L for each coil using image support reduction 
and monotonic sorting of voxels, varies coil-by-coil. Since 
the low-rank approximation operates in the matrix LP, 
image voxels may experience different denoising in each 
coil, potentially changing noise correlation among receiver 
coils.   

Hence, the BLUE, which exploits noise covariance 
among receiver coils as prior information, may produce 
non-optimal image combination in the coil direction. 
Additionally, given the reversed order of the global, two-
step denoising operation, the low-rank approximation needs 
to be further applied by a factor of the number of coils, 
substantially decreasing computational.

To further expedite noise reduction in SEMAC, we 
propose three-step sequential denoising exploiting low-
rank approximation and sparsity in multi-dimensional data 
representation. The proposed algorithm for SEMAC z-s 
dimension reduces noise amplification by obtaining the 
significant singular values using coil sensitivity and noise 
covariance matrix. Thus, BLUE provides SNR-optimized coil 
combination. These noise pre-processing steps enable the 
l1 minimization to recover sparse distorted slice profiles 
and suppress noise from the correction of through-plane 
distortions. For rapid imaging, the proposed method is easily 
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combined with fast sampling schemes (11, 14). 
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