References
- D. L. Donoho, "Compressed Sensing," IEEE Tran. on Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006. https://doi.org/10.1109/TIT.2006.871582
- C. A. Metzler, A. Maleki, and R. G. Baraniuk, "From Denoising to Compressed Sensing," IEEE Tran. on Inf. Theory, vol. 62, no. 9, pp. 5117-5144, Sep. 2016. https://doi.org/10.1109/TIT.2016.2556683
- Y. LeCun, Y. Bengio, and G. Hinton, "Deep Learning," Nature 521, pp. 436-444, 2015. https://doi.org/10.1038/nature14539
- A. Mousavi, A. B. Patel, R. G. Baraniuk, "A deep learning approach to structured signal recovery," 53rd Annual Allerton Conference on Communication, Control, and Computing, pp. 1226-1343, 2015.
- K. Kulkarni, S. Lohit, P. Turaga, R. Kerviche, A. Ashok, "ReconNet: Non-Iterative Reconstruction of Images from Compressively Sensed Measurements," IEEE Conference on Computer Vision and Pattern Recognition, pp. 449-458, 2016.
- A. Mousavi and R. G. Baraniuk, "Learning to invert: Signal recovery via deep convolutional networks," arXiv preprint arXiv:1701.03891, 2017.
- C. A. Metzler, A. Mousavi, R. G. Baraniuk, "Learned D-AMP: Principled Neural-Network- based Compressive Image Recovery," arXiv preprint arXiv:1704.06625, 2017.
- M. Borgerding, P. Schniter, and S. Rangan, "AMP-Inspired Deep Networks for Sparse Linear Inverse Problems," IEEE Trans. Sig. Processing, early access, May 2017.
- H. Palangi, R. Ward, and L. Deng, "Distributed Compressive Sensing: A Deep Learning Approach," IEEE Trans. Sig. Processing, vol. 64, no. 17, pp. 4504-4518, Sep. 2016. https://doi.org/10.1109/TSP.2016.2557301
- D. E. Rumelhart, G. Hinton and R. J. Williams, "Learning presentations by back-propagation errors," Nature 323, pp. 533-536, 1986. https://doi.org/10.1038/323533a0
- G. Hinton, S. Osinder, and Y. W. The, "A fast learning algorithm for deep belif nets," Neural computation, vol. 18, no. 7, pp. 1527-1554, Jul. 2006. https://doi.org/10.1162/neco.2006.18.7.1527
- A. Krizhevsky, I. Sutskever, and G. Hinton, "Imagenet classification with Deep Convolutional Neural Networks," Advances in Neural Information Processing Systems, pp. 1097-1105, Dec. 2012.
- N. Srivastava, G Hinton, A. Krizhevsky, "Dropout: A simple way to prevent neural networks from overfitting," The Journal of Machine Learning Research 15.1, pp. 1928-1958, 2014.
- C. Szegedy et al, "Going deeper with convolutions," CoRR, abs/1409.4842, 2014.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," IEEE International Conference on Computer Vision and Pattern Recognition, Nevada, USA, pp. 770-778, Nov. 2016.
- Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998. https://doi.org/10.1109/5.726791
- I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, The MIT Press, 2016.
- G. Dahl, T. Sainath, and G. Hinton, "Improving deep neural networks for LVCSR using rectified linear units and dropout," IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), BC, Canada, pp. 8609-8613, 2013.
- D. L. Donoho and Y. Tsaig, "Fast Solution of L1-norm Minimization Problems When the Solutioni May Be Sparse," IEEE Trans. Info. Theory, vol. 54, no. 11, pp. 4789-4812, Nov. 2008. https://doi.org/10.1109/TIT.2008.929958
- A. Chambolle, R. A. DeVore, N. Lee, and B. J. Lucier, "Nonlinear wavelet image processing: Variational problems, compression, and noise removal through wavelet shrinkage," IEEE Trans. Image Process., vol. 7, no. 3, pp. 319-335, Mar. 1998. https://doi.org/10.1109/83.661182
- D. L. Donoho, A. Maleki, and A. Montanari, "Message passing algorithms for compressed sensing," Proc. Nat. Acad. Sci., vol. 106, pp. 18914-18919, Nov. 2009. https://doi.org/10.1073/pnas.0909892106
- Christopher A. Metzler, A. Maleki, and R. G. Baraniuk, "From Denoising to Compressed Sensing," IEEE Trans. Info. Theory, vol. 62, no. 9, pp. 5117-5144, Sep. 2016. https://doi.org/10.1109/TIT.2016.2556683
- C. Li, W. Yin, and Y. Zhang, "User's guide for tval3: TV minimization by augmented lagrangian and alternating direction algorithms," CAAM report, vol. 20, pp. 46-47, 2009.
- W. Dong et al, "Compressive Sensing via Nonloca Low-Rank Regularizatioin," IEEE Trans. Image Processing, vol. 23, no. 8, pp. 3618-3632, Aug. 2014. https://doi.org/10.1109/TIP.2014.2329449
- P. Schniter, S. Rangan, and A. Fletcher, "Vector approximate message passing for the generalized linear model," 2016 50th Asilomar Conference on Signals, Systems and Computers, CA, USA, Nov. 2016.
- E. J. Candes, J. Romberg, and T. Tao, "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information," IEEE Trans. Info. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006. https://doi.org/10.1109/TIT.2005.862083
- A. Mousavi, A. Maleki, R. G. Baraniuk, "Consistent parameter estimation for LASSO and approximate message passing," Annals of Statistics, 2017.
Cited by
- 주성분 분석법을 이용한 회귀다항식 기반 모델 및 패턴 분류기 설계 vol.10, pp.6, 2017, https://doi.org/10.17661/jkiiect.2017.10.6.594
- 무인기 탑재 다중 센서 기반 국지 산불 감시 및 상황 대응 플랫폼 설계 및 구현 vol.10, pp.6, 2017, https://doi.org/10.17661/jkiiect.2017.10.6.626
- 로그 분석 처리율 향상을 위한 맵리듀스 기반 분할 빅데이터 분석 기법 vol.11, pp.5, 2017, https://doi.org/10.17661/jkiiect.2018.11.5.593