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Abstract: The problem of model selection arises in a number of
contexts, such as subset selection in linear regression, estimation
of structures in graphical models, and signal denoising. This pa-
per studies non-asymptotic model selection for the general case of
arbitrary (random or deterministic) design matrices and arbitrary
nonzero entries of the signal. In this regard, it generalizes the no-
tion of incoherence in the existing literature on model selection
and introduces two fundamental measures of coherence—termed
as the worst-case coherence and the average coherence—among
the columns of a design matrix. It utilizes these two measures of
coherence to provide an in-depth analysis of a simple, model-order
agnostic one-step thresholding (OST) algorithm for medel selec-
tion and proves that OST is feasible for exact as well as partial
model selection as Iong as the design matrix obeys an easily veri-
fiable property, which is termed as the coherence property. One
of the key insights offered by the ensuing analysis in this regard
is that OST can successfully carry out model selection even when
methods based on convex optimization such as-the lasso fail due
to the rank deficiency of the submatrices of the design matrix. In
addition, the paper establishes that if the design matrix has reason-
ably small worst-case and average coherence then OST performs
near-optimally when either (i) the energy of any nonzero entry of
the signal is close to the average signal energy per nonzero entry or
(ii) the signal-to-noise ratio in the measurement system is not too
high. Finally, two other key contributions of the paper are that (i)
it provides bounds on the average coherence of Gaussian matrices
and Gabor frames, and (ii) it extends the results on model selec-
tion using OST teo low-complexity, model-order agnostic recovery
of sparse signals with arbitrary nonzero entries. In particular, this
part of the analysis in the paper implies that an Alltop Gabor frame
together with OST can successfully carry out model selection and
recovery of sparse signals irrespective of the phases of the nonzero
entries even if the number of nonzero entries scales almost linearly
with the number of rows of the Alltop Gabor frame,
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I. INTRODUCTION

A. Background

In many information processing and statistics problems in-
volving high-dimensional data, the “curse of dimensionality”
can often be broken by exploiting the fact that real-world data
tend to live in low-dimensional manifolds. This phenomenon is
exemplified by the important special case in which a data vector
B € C? satisfies [|8]lg = > 7_11q8)>0p < k < p and is ob-
served according to the linear measurement model y = X3+
Here, X is an n x p (real- or complex-valued) matrix called the
measurement or design matrix, while 7 € C™ represents noise
in the measurement system. In this problem, the assumption that
the data vector 3 is “k-sparse” allows one to operate in the so-
called “compressed” setting, & < n < p, thereby enabling tasks
that might be deemed prohibitive otherwise because of either
technological or computational constraints.

Fundamentally, given a measurement vector y = X8 + 7
in the compressed setting, there are three complementary—but
nonetheless distinct—questions that one needs to answer:

[Estimation] Under what conditions can we obtain a reliable

estimate of a k-sparse 3 from y?

[Regression] Under what conditions can we reliably approx-

imate X J corresponding to a k-sparse 3 from y?

[Model selection] Under what conditions can we reliably re-

cover the locations of the nonzero entries of a k-sparse 3 (in

other words, the model S = {i € {1,---,p} : |8 > O}

from y?

A number of researchers have attempted to address the estima-
tion and the regression question over the past several years. In
many application areas, kowever, the model-selection question
is equally—if not more—important than the other two ques-
tions. In particular, the problem of model selection (sometimes
also known as variable selection or sparsity pattern recovery)
arises indirectly in a number of contexts, such as subset selec-
tion in linear regression [1], estimation of structures in graphi-
cal models [2], and signal denoising [3]. In addition, solving the
model-selection problem in some (but not all) cases also enables
one to solve the estimation and/or the regression problem.

B. Main Contributions

Model selection: One of the primary objectives of this paper
is to study the problem of polynomial time, model-order agnos-
tic model selection in a compressed setting for the general case
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Algorithm 1 The OST algorithm for model selection

Input: Ann x p matrix X, a vector y € C", and a threshold A > 0

Output: Anestimate S C {1, -, p} of the true model S
[+ XMy
S« {ie{l,--p}:|fil > A}

{ Form signal proxy}
{Select model via OST}

of arbitrary (random or deterministic) design matrices and arbi-
trary nonzero entries of the signal. In order to accomplish this
task, we introduce in the paper two fundamental measures of
coherence among the (normalized) columns {x; € C"} of the
n X p design matrix X, namely,'

o Worst-case coherence: u(X) = max. |(xi,%;)|, and
i,Jii7]
o Average coherence: v(X) = Ly max | 37 (xi,x;)|.
vl

Roughly speaking, worst-case coherence—which seems to have
been introduced in the related literature in [4]—is a similarity
measure between the columns of a design matrix: The smaller
the worst-case coherence, the less similar the columns. On the
other hand, average coherence—which was first introduced in a
conference version of this paper [5]—is a measure of the spread
of the columns of a design matrix within the r-dimensional unit
ball: The smaller the average coherence, the more spread out the
column vectors.

Our main contribution in the area of model selection is that
we make use of these two measures of coherence to propose
and analyze a model-order agnostic threshold for the one-step
thresholding (OST) algorithm (see Algorithm 1) for model se-
lection. Specifically, we characterize in Section II both the exact
and the partial model-selection performance of OST in a non-
asymptotic setting in terms of p and v. In particular, we es-
tablish in Section II that if u(X) < n~1/2 and »(X) 3% n~!
then OST—despite being computationally primitive—can per-
form near-optimally for the case when either (i) the energy of
any nonzero entry of 3 is not too far away from the average
signal energy per nonzero entry ||3]|3/k or (ii) the signal-to-
noise ratio (SNR) in the measurement system is not too high.?
Equally importantly, in contrast to some of the existing literature
on model selection, this analysis in the paper holds for arbitrary
values of the nonzero entries of 3 and it does not require the
n x k submatrices of the design matrix X to have full column
rank.

Sparse-signal recovery: The second main objective of this
paper is to study the problem of low-complexity, model-order
agnostic recovery of k-sparse signals with arbitrary nonzero en-
tries in the noiseless case. In this regard, our main contribution
in the area of sparse-signal recovery is that we make use of a
recent result by Tropp [6] in Section III to extend our results on
model selection to recovery of k-sparse signals using OST (see
Algorithm 2). In particular, we establish in Section IV that Ga-

*Here, and throughout the rest of this paper, we assume without loss of gen-
erality that X has unit £2-norm columns. This is because deviations to this as-
sumption can always be accounted for by appropriately scaling the entries of the
data vector 3 instead.

2Recall “Big-0” notation: f(n) = O(g(n)) (alternatively, f(n) =3 g(n))
ifdco > 0,no : Vi 2> no, f(n) < cog(n), f(n) = Q(g(n)) (alterna-
tively, f(n) = g(n))if g(n) = O(f(n)), and f(n) = ©(g(n)) (alternatively,
F(n) = g(n))if g(n) 3 £(n) 3 gln)]

bor frames—which are collections of time- and frequency-shifts
of a nonzero seed vector (sequence) in C"—can potentially be
used together with OST to exactly recover most k-sparse signals
with arbitrary nonzero entries as long as & < p~?/logn and
the energy of any nonzero entry of 3 is not too far away from
|81|2/k. This result then applies immediately to Gabor frames
generated from the Alltop sequence [7]. Specifically, since Ga-
bor frames generated from the Alltop sequence have worst-case
coherence u = % for any prime n > 5 [8], this result implies
that an Alltop Gabor frame together with OST successfully re-
covers most k-sparse signals irrespective of the values of the
nonzero entries of 3 as long as k 3 n/logn and the energy of
any nonzero entry of 3 is not too far away from || 3||3/k.

C. Relationship to Previous Work

The problems of model selection and sparse-signal recovery
in general and the use of OST (also known as simple thresh-
olding 191 and marginal regression [10]) to solve these prob-
lems in particular have a rich history in the literature. In the
context of model selection in the compressed setting, Mallow’s
Cy selection procedure [11] and the Akaike information crite-
rion (AIC) [12]—both of which essentially attempt to solve a
complexity-regularized version of the least-squares criterion—
are considered to be seminal works, and are known to perform
well empirically as well as theoretically; see, e.g., [13] and
the references therein. These two procedures have been mod-
ified by numerous researchers over the years in order to im-
prove their performance—the most notable variants being the
Bayesian information criterion (BIC) [14] and the risk inflation
criterion (RIC) [15]. Solving model-selection procedures such
as Cp, AIC, BIC, and RIC, however, is known to be an NP-hard
problem [16] even if the true model order & is made available to
these procedures.

In order to overcome the computational intractability of these
model-selection procedures, several methods based on convex
optimization have been proposed by various researchers in re-
cent years. Among these proposed methods, the lasso [17] has
arguably become the standard tool for model selection, which
can be partly attributed to the theoretical guarantees provided
for the lasso in [2], [18]-[20]. In particular, the results reported
in [2] and [18] establish that the lasso asymptotically identifies
the correct model under certain conditions on the design matrix
X and the sparse vector 3. Later, Wainwright in [19] strengthens
the results of [2] and [18], and makes explicit the dependence of
exact model selection using the lasso on the smallest (in mag-
nitude) nonzero entry of 5. However, apart from the fact that
the results reported in [2], [18], and [19] are for exact model se-
lection and are only asymptotic in nature, the main limitation of
these works is that explicit verification of the conditions (such as
the irrepresentable condition of [18] and the incoherence con-
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Algorithm 2 The OST algorithm for sparse-signal recovery

Input: Ann X p matrix X, a vectory € C", and a threshold A > 0

Output: An estimate 8 € CP of the true sparse signal 3
B +«—0
fe XMy
I {ief{l,--p}:Ifil > A}
Br + (Xo)y

{Initialize}
{Form signal proxy}
{Select indices via OST}

{Recover signal via least-squares }

dition of [19]) that a generic design matrix X needs to satisfy is
computationally intractable for & >~ x~!. The most general (and
non-asymptotic) model-selection results using the lasso for ar-
bitrary design matrices have been reported in [20]. Specifically,
Candeés and Plan have established in [20] that the lasso correctly
identifies most models with probability 1 — O(p~!) under cer-
tain conditions on the smallest nonzero entry of 3 provided: (i)
The spectral norm (the largest singular value) and the worst-
case coherence of X are not too large, and (ii) the values of
the nonzero entries of 3 are independent and statistically sym-
metric around zero. Despite these recent theoretical triumphs of
the lasso, it is still desirable to study alternative solutions to the
problem of polynomial time, model-order agnostic model selec-
tion in a compressed setting. This is because:?

1) Lasso requires the minimum singular values of the subma-
trices of X corresponding to the true models to be bounded
away from zero [2], [18]-[20]. While this is a plausible con-
dition for the case when one is interested in estimating 3, it
is arguable whether this condition is necessary for the case
of model selection.

2) The current literature on model selection using the lasso
lacks guarantees beyond k = pu~! for the case of generic
design matrices and arbitrary nonzero entries. In particular,
given an arbitrary design matrix X, [2], [18]-[20] do not
provide any guarantees beyond k = 1/n for even the simple
case of 3 € RY.

3) The computational complexity of the lasso for generic de-
sign matrices tends to be O(p® + np?) [10]. This makes
the lasso computationally demanding for large-scale model-
selection problems.

Recently, a few researchers have raised somewhat similar
concerns about the lasso and revisited the much older (and
oft-forgotten) method of thresholding for model selection [10],
[22]-[24], which has computational complexity of O(np) only
and which is known to be nearly optimal for p x p orthonormal
design matrices [25]. Algorithmically, this makes our approach
to model selection similar to that of [10], [22]-[24]. Neverthe-
less, the OST algorithm presented in this paper differs from [10],
[22]-[24] in five key aspects:

1) Model-order agnostic model selection: Unlike [10], [22]-
[24], the OST algorithm presented in this paper is com-
pletely agnostic to both the true model order & and any esti-
mate of k.

2) Generic design matrices and arbitrary nonzero entries:

3During the course of revising this paper we also became aware of [21], which
proposes a thresholded variant of basis pursuit [3] for sparsity pattern recovery
using Gaussian design matrices. However, the results reported in [21] are limited
because of similar issues and because of the requirement that the magnitude of
the smallest nonzero entry of 3 be known to the algorithm.

The results reported in this paper hold for arbitrary (random
or deterministic) design matrices and do not assume any sta-
tistical prior on the values of the nonzero entries of 3 even
when £ scales linearly with n. In contrast, [23] only studies
the problem of Gaussian design matrices whereas the most
influential results reported in [10], [22], and [24] assume
that the values of the nonzero entries of 3 are independent
and statistically symmetric around zero.

3) Verifiable sufficient conditions: In contrast to [10], [22]-
[24], we relate the model-selection performance of OST to
two global parameters of X, namely, ¢ and v, which are
trivially computable in polynomial time: p(X) = || X1 X —
I||max and v(X) = ?ﬁH(XHX — DN1|co-

4) Non-asymptotic theory: Similar to [10], [23], and [24], the
analysis in this paper can be used to establish that OST
achieves (asymptotically) consistent model selection under
certain conditions. However, the results reported in this pa-
per are completely non-asymptotic in nature (with explicit
constants) and thereby shed light on the rate at which OST
achieves consistent model selection.

5) Partial model selection: In addition to the exact model-
selection performance of OST, we also characterize in the
paper its partial model-selection performance. In this re-
gard, we establish that the universal threshold proposed in
Section II for OST guarantees 8 C S with high probabil-
ity and we quantify the cardinality of the estimate S.On the
other hand, both [22] and [23] study only exact model selec-
tion, whereas [10] and [24] study approximate (though not
partial) model selection only for Gaussian design matrices
[10] and assuming Gaussian (resp. statistical) priors on the
nonzero entries of 3 [24] (resp. [10]).

We conclude this discussion of model selection by making
three important remarks. First, to the best of our knowledge,
Donoho in [9, Theorem 7.2] reported some of the earliest known
results for thresholding in the compressed setting. Nevertheless,
the conclusion drawn in [9] was that thresholding is feasible for
model selection as long as k& X 1, the so-called “square root
bottleneck.” Second, the structure of OST and the model-order
agnostic threshold of this paper enable us to carry out localized
model selection. Specifically, if one is provided at the time of re-
covery with a set 7 such that 7" O S then the threshold proposed
in this paper enables one to carry out model selection using the
submatrix X7 instead of X, thereby reducing the complexity of
OST from O(np) to O(n|T). Third, the results reported in this
paper hold for any n < p and, in particular, the universal thresh-
old proposed here for model selection reduces to the universal
threshold proposed by Donoho and Johnstone {25] for p x p
orthonormal design matrices. In this sense, some of the results
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Xy = Set of k-sparse signals in I, for
which k < i
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I'p = Set of signals in ¥y — Xy that are
supported on “bad” subsets

%1 = Space of all k-sparse unimodal signals in R} such that k X n/logn

Fig. 1. A Venn digram used to illustrate the major difference between the BP-based recovery guarantees and the OST-based recovery guarantees
for k-sparse unimodal signals in ]Rf; measured using Alltop Gabor frames. The OST algorithm is guaranteed to recover 8 € ©; — I'g. But BP,

unlike OST, is only guaranteed to recover 3 € 23 in this case.

reported in [25] can also be thought of as special instances of
the results reported in this paper.

Finally, in the context of sparse-signal recovery in the com-
pressed setting, there exists now a large body of literature that
studies this problem under the rubric of compressed sensing
[26]. However, convex optimization procedures such as basis
pursuit (BP) [3], Dantzig selector [27], and lasso—although
known for their ability to recover sparse signals under a variety
of conditions—are ill-suited for large-scale problems because
of their computational complexity. On the other hand, low-
complexity iterative algorithms such as matching pursuit [28],
subspace pursuit [29], compressive sampling matching pursuit
(CoSaMP) [30], and iterative hard thresholding [31], and combi-
natorial algorithms based on group testing such as heavy hitters
on steroids (HHS) pursuit [32] and Fourier samplers [33], [34]
have been shown to perform well either only for some special
classes of design matrices [32]-[34] or for design matrices that
satisfy the restricted isometry property (RIP) [35]. Nevertheless,
explicitly verifying that X satisfies the RIP of order k& > p~*
is computationally intractable; in particular, since we have from
the Welch bound [36] that =1 X y/n for p > 1, the guarantees
provided in [29]-[31] for the case of generic design matrices at
best hold only for k-sparse signals with k& 5 \/n.

In contrast, and motivated by the need to have verifiable suf-
ficient conditions for low-complexity algorithms and arbitrary
values of the nonzero entries of 3 even when k > /n, we ex-
tend in Section III our results on model selection using OST and
characterize the performance of Algorithm 2 in terms of three
global parameters of the design matrix X: p(X), v(X), and
|| X l|2. In particular, a highlight of this part of the paper is that
we partially strengthen the results of Pfander et al. [37] and Her-
man and Strohmer [38] by establishing that Gabor frames gen-
erated from the Alltop sequence can be used along with OST to
recover most k-sparse signals belonging to certain classes even
when k - \/n. It is worth pointing out here that both [37] and
[38] also establish that Alltop Gabor frames can recover most
k-sparse signals—albeit using BP—even when k - \/n. Nev-
ertheless, the basic difference between [37] and [38], and the
work presented here is that [37] and [38] require the phases of
the nonzero entries of 3 to be statistically independent and uni-
formly distributed on the unit torus whereas we do not assume
any statistical prior on the values of the nonzero entries of (.
Note in particular that, just like the lasso result in [20], the re-
sults reported in [37] and [38] for Alltop Gabor frames conse-

quently do not provide any guarantees beyond k 7~ 1/n for even
the simple case of 3 € RE. This difference between the BP-
based recovery guarantees presented in [37] and [38] (which are
essentially based on [39]) and the OST-based recovery guaran-
tees provided in this paper is also illustrated using a Venn dia-
gram in Fig. 1 for unimodal signals (defined as: |3;| = ¢ for
some arbitrary ¢ > 0 and for all 7 € S).

D. Notation

The following notation is used throughout the rest of this pa-
per. We use lowercase letters to denote scalars and vectors, while
we use uppercase letters to denote matrices. We also use 0, 1,
and 7 to denote the all-zeros vector, the all-ones vector, and the
identity matrix, respectively. In addition, we use ||v||,, to denote
the usual £,-norm of a vector v, while we use Af, || A2, and
[l A|lmax to denote the Moore-Penrose pseudoinverse, the spec-
tral norm, and the maximum magnitude of any entry of a matrix
A, respectively. Further, we use ()T and (-)! to denote the oper-
ations of transposition and conjugate transposition, respectively,
while we use (-, -) to denote inner product that is conjugate lin-
ear in the first argument. Finally, given a set Z, we use vz to
denote the part of a vector v corresponding to the indices in Z
and Az to denote the submatrix obtained by collecting the |Z}
columns of a matrix A corresponding to the indices in Z.

E. Organization

The rest of this paper is organized as follows. In Section II,
we propose a model-order agnostic threshold for the OST al-
gorithm and characterize both the exact and the partial model-
selection performance of OST. In Section III, we extend our re-
sults on model selection and characterize the sparse-signal re-
covery performance of OST. In Section IV, we specialize the
model-selection and the sparse-signal recovery results of the
previous sections to Gabor frames. Finally, we provide proofs
of the main results of this paper in Section V and conclude with
a discussion of the limitations and extensions of our results in
Section VI

II. MODEL SELECTION USING ONE-STEP
THRESHOLDING

A. Assumptions

Before proceeding with presenting our results on model se-
lection using OST, we need to be mathematically precise about
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our problem formulation. To this end, we begin by reconsider-
ing the measurement model y = X3 + n and assume that X
is an n X p real- or complex-valued design matrix having unit
£3-norm columns, B € CP is a k-sparse signal (||3]lo < k),
and £ < n < p. Here, we allow X to be either a random or a
deterministic design matrix, while we take 7 to be a complex ad-
ditive white Gaussian noise vector. It is worth mentioning here
though that Gaussianity of 7 is just a simplified assumption for
the sake of this exposition; in particular, the results presented
in this section are readily generalizable to other noise distribu-
tions as well as perturbations having bounded £2-norms. Finally,
the main assumption that we make here is that the true model
S={ie{1,---,p}:|B;| > 0} is a uniformly random k-subset
of {1,---,p}. In other words, we have a uniform prior on the
support of the data vector 3.

B. Main Results

Intuitively speaking, successful model selection requires the
columns of the design matrix to be incoherent. In the case of
the lasso, this notion of incoherence has been quantified in [18]
and [19] in terms of the “irrepresentable condition” and the “in-
coherence condition,” respectively (see also [20]). In contrast to
earlier work on model selection, however, we formulate this idea
of incoherence in terms of the coherence property.

Definition 1 (The coherence property). An n X p design ma-
trix X having unit ¢,-norm columns is said to obey the coher-
ence property if the following two conditions hold

0.1

7
¥(X) < Nt (CP-2)

In words, (CP-1) roughly states that the columns of X are
not too similar, while (CP-2) roughly states that the columns
of X are somewhat distributed within the n-dimensional unit
ball. Note that the coherence property is superior to other mea-
sures of incoherence such as the irrepresentable condition in two
key aspects. First, it does not require the singular values of the
submatrices of X to be bounded away from zero. Second, it
can be easily verified in polynomial time since it simply re-
quires checking that || XHX — I < (200logp)~'/2 and
”(XHX — D1l < (p— l)n_l/anHX — Il max-

Below, we describe the implications of the coherence prop-
erty for both the exact and the partial model-selection perfor-
mance of OST. Before proceeding further, however, it is instruc-
tive to first define some fundamental quantities pertaining to the
problem of model selection as follows

2

Bmin = min |3, MAR = _Cmin_
p 1 1813/%
R = min . 1Bl ‘

E{|Inll3]/k E[[lnl3]

In words, Bnip is the magnitude of the smallest nonzero entry of
B, while minimum-to-average ratio (MAR) [23] is the ratio of the
energy in the smallest nonzero entry of 3 and the average signal
energy per nonzero entry of 3. Likewise, SNRp;y, is the ratio of
the energy in the smallest nonzero entry of 8 and the average
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noise energy per nonzero entry, while SNR simply denotes the
usual signal-to-noise ratio in the system. It is also worth pointing
out here the relationship between SNRp,;, and SNR and MAR;
specifically, it is easy to see that SNRpin = SNR MAR. We are
now ready to state the first main result of this paper that concerns
the performance of OST in terms of exact model selection.
Theorem 1 (Exact model selection using OST). Suppose that
the design matrix X satisfies the coherence property and let 5
be distributed as CA(0, 2T). Next, choose the threshold A =

max{%lOp\/m, %_tﬁ}\ﬂcﬂ logp for any t € (0,1).
Then, if we write u(X) as p = c;n~/7 for some ¢; > 0
(which may depend on p) and v € {0} U [2,00), the OST al-
gorithm (Algorithm 1) satisfies Pr(S # S) < 6p~! provided
p > 128 and the number of measurements satisfies

coklogp <63k logp>7/2}

n > max {Zklogp

" SNRmin MAR
k1 3 /2
= max{leogp, 2% 08P , (CS ng) . (D
SNR MAR MAR

Here, the quantities cz,c3 > 0 are defined as co = 16(1 —
t)~2 and c3 = 800c3t 2, while the probability of failure is with
respect to the true model S and the noise vector 7).

The proof of this theorem is provided in Section V. Note th-
at the parameter ‘¢’ in Theorem 1 can always be fixed a pri-
ori (say t = 1/2) without affecting the scaling relation in
(1). In practice, however, ¢ should be chosen so as to reduce
the total number of measurements needed to ensure success-
ful model selection; the optimal choice of ¢ in this regard is

. 2 )
topt = argmin, (max {%, (%g—p)W }) Notice also

that Theorem 1 is best suited for applications where one is in-
terested in quantifying the minimum number of measurements
needed to guarantee exact model selection for a given class of
signals. Alternatively, it might be the case in some other appli-
cations that the problem dimensions are fixed and one is instead
interested in specifying the class of signals that leads to success-
ful model selection. The following variant of Theorem 1 is best
suited in such situations.

Theorem 2. Suppose that the design matrix X satisfies the
coherence property and let the noise vector n be distributed as
CN(0,0%I). Next, let p > 128 and choose the threshold A =

max{%lO,u\/nSNR, %_t\/ﬁ}\ﬂa? logp for any t € (0,1).

Then, the OST algorithm (Algorithm 1) satisfies Pr(§ #8) <
6p~! as long as we have that k < n/(2logp) and

MAR > max{ (2)

caklogp ciklogp
nSNR ' pu—2 ’
Here, c2 > 0 is as defined in Theorem 1, ¢5 > 0 is defined as
¢4 = 800t~2, and the probability of failure is with respect to the
true model S and the noise vector 7.

Note that the proof of Theorem 2 follows directly from the
proof of Theorem 1. There are a few important remarks that ne-
ed to be made at this point concerning the threshold proposed
in Theorem 1 and Theorem 2 for the OST algorithm. First, it is
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Algorithm 3 The SOST algorithm for model selection

Input: Ann x p matrix X, a vector y € C", and model order £
Output: An estimate S C {1, -- -, p} of the true model S

J Xty
(, £5) = SORT(({1,-,p}, f))
S I[1: kK

{Form signal proxy}
{Sort the signal proxy}

{Select model via OST}

easy to see that the proposed threshold is completely agnostic to
the model order k and only requires knowledge of the SNR and
the noise variance. Second, some of the bounds in the proof of
Theorem 1 and extensive simulations suggest that the absolute
constant 10 in the proposed threshold is somewhat conservative
and can be reduced through the use of more sophisticated ana-
lytical tools (also see Section VI). Finally, while estimating the
true model order k tends to be harder than estimating the SNR
and the noise variance o2 in majority of the situations, it might
be the case that estimating & is easier in some applications. It
is better in such situations to work with a slight variant of the
OST algorithm (see Algorithm 3) that relies on knowledge of the
model order k instead and returns an estimate S corresponding
to the % largest (in magnitude) entries of X #y. We characteri-
ze the performance of this algorithm—which we term as sorted
one-step thresholding (SOST) algorithm—in terms of the fol-
lowing theorem.

Theorem 3 (Exact model selection using SOST). Suppose
that the design matrix X satisfies the coherence property and
let the noise vector 7 be distributed as CA'(0, o%I). Next, write
w(X) as p = cyn~Y/7 for some ¢; > 0 (which may de-
pend on p) and v € {0} U [2,00). Then, the SOST algorithm
(Algorithm 3) satisfies Pr(§ #8) < 6p~!aslongasp > 128
and the number of measurements satisfies

coklogp (c:gklogp)wz}

n > min max {%logp,

te(0,1) SNRmin - \ MAR
k1 klogp\/?
= min max < 2klogp, c2 ng, 3% D8P )]
te(0,1) SNR MAR MAR

Here, the quantities ¢z, c3 > 0 are as defined in Theorem 1,
while the probability of failure is with respect to the true model
S and the noise vector 7.

The proof of this theorem is just a slight variant of the proof of
Theorem 1 and is therefore omitted here. A few remarks are in
order now concerning OST and SOST. First, the computational
complexity of SOST is comparable with that of OST since ef-
ficient sorting algorithms (such as heap sort) tend to have com-
putational complexity of O(plogp) only. Second, (1) and (3)
suggest that knowledge of the true model order k allows SOST
to perform better than OST in situations where the threshold pa-
rameter ¢ is fixed a priori (cf. Theorem 1). In this sense, SOST
should be preferred over OST for exact model selection pro-
vided one has accurate knowledge of the true model order k.
On the other hand, OST should be the algorithm of choice for
model-selection problems where it is difficult to obtain a reliable
estimate of the true model order. We conclude this discussion
by rephrasing Theorem 3 for SOST along the lines of Theo-

rem 2 for OST.

Theorem 4. Suppose that the design matrix X satisfies the -
coherence property. Next, let p > 128 and let the noise vec-
tor 77 be distributed as CA/(0, o%1). Then, the SOST algorithm
(Algorithm 3) satisfies Pr(S # &) < 6p~? as long as we have
k <n/(2logp) and

MAR > min
te(0,1)

{czklogp cgklogp}' @

nSNR ' p—2

Here, the quantities ca,c¢4 > O are as defined in Theorem 2,
while the probability of failure is with respect to the true model
S and the noise vector 7.

The final result that we present in this section concerns the
partial model-selection performance of OST. Specifically, note
that our focus in this section has so far been on specifying con-
ditions for either the number of measurements or the MAR of the
signal that ensure exact model selection. In many real-world ap-
plications, however, the parameters of the problem are fixed and
it is not always possible to ensure that either the number of mea-
surements or the MAR of the signal satisfy the aforementioned
conditions. A natural question to ask then is whether the OST al-
gorithm completely fails in such circumstances or whether any
guarantees can still be provided for its performance. We address
this aspect of the OST algorithm in the following and show that,
even if the MAR of 3 is very small, OST has the ability to iden-
tify the locations of the nonzero entries of 3 whose energies are
greater than both the noise power and the average signal energy
per nonzero entry. In order to make this notion mathematically
precise, we first define the mth largest-to-average ratio (LAR,,)
of 3 as the ratio of the energy in the mth largest (in magnitude)
nonzero entry of 3 and the average signal energy per nonzero
entry of f3; that is,

LARy, = ——g—
o BlI5/k

where () denotes the mth largest nonzero entry of 3 (note
that MAR = LARj). We are now ready to specify the partial
model-selection performance of the OST algorithm.,

Theorem 5 (Partial model selection using OST). Suppose
that the design matrix X satisfies the coherence property. Next,
let p > 128 and 7 be distributed as CA(0,0?[). Final-
ly, fix a parameter ¢ € (0,1) and choose the threshold

A= max{%lOu\/nSNR, 1—1;\/5}\/202logp. Then, under

the assumption that & < n/(2logp), the OST algorithm
(Algorithm 1) guarantees with probability exceeding 1 — 6p~!

that S C S and |S — §] < (k — M), where M is the largest
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integer for which the following inequality holds

coklogp cgklogp}. )

LARprr > max{ mSNR M_Q
Here, the quantities co, ¢4 > 0 are as defined in Theorem 2,
while the probability of failure is with respect to the true model
S and the noise vector 7.

The proof of this theorem, which relies to a great extent on
the proof of Theorem 1, is provided in Section V. We conclude
this section by pointing out that no counterpart of Theorem 5
exists for the SOST algorithm since we can never have Scs
in that case because of the nature of the algorithm.

C. Discussion

The results reported earlier can be best put into perspective
by considering some specific model-selection problems that are
commonly studied in the literature and juxtaposing our results
with the ones reported in previous works. The rest of this section
is devoted to such comparison purposes.

C.1 Gaussian Design Matrices

Matrices with independent and identically distributed (i.i.d.)
N(0,1/n) entries (i.e., Gaussian matrices) are perhaps the most
widely assumed design matrices in the model-selection litera-
ture. In order to specialize our results to Gaussian design ma-
trices, we first need to specify the worst-case coherence y and
the average coherence v of ii.d. Gaussian matrices. The first
lemma that we have in this regard follows immediately from
Proposition 5 in Appendix A through a simple union bound ar-
gument.

Lemma 1 (Worst-case coherence of Gaussian matrices). Let
X be ann X p design matrix with i.i.d. A'(0, 1/n) entries. Then,
we have that u(X) < 1/(15logp)/n with probability exceed-
ing 1 — 2p~! as long as n > 60log p.

Remark 1. A cautious reader might argue here that
Lemma 1 only provides an upperbound on the worst-case co-
herence of Gaussian matrices. Nevertheless, the results (and the
definition of the coherence property) presented earlier remain
valid if one replaces x(X') with an upperbound 7i(X) on u(X).

Lemma 2 (Average coherence of Gaussian matrices). Let X
be an n x p design matrix with i.i.d. A(0,1/n) entries. Then,
we have that v(X) < /15logp/n with probability exceeding
1 —2p~2aslongasp > n > 60logp.

Proof: 'The proof of this lemma is also a consequence
of Proposition 5 in Appendix A. Specifically, fix an index
i € {1,---,p} and define X; = >_., xj/v/p — L. Then, it is
easy to see that %; is distributed as A'(0,I/n) and it is inde-
pendent of x;. Therefore, Proposition 5 in Appendix A implies
through a simple union bound argument that max; |(x;, %;)| <
v/ (151og p)/n with probability exceeding 1 — 2p~2 as long as
n 2> 60logp. The proof now follows from the fact that p > n
and v(X) = max; |{(x;,%)|/v/P — L. O

Lemma 1 and Lemma 2 establish that Gaussian design ma-
trices satisfy the coherence property with high probability as
long as n = (logp)?. Theorem 1 (resp. Theorem 3) there-
fore implies that OST (resp. SOST) correctly identifies the ex-
act model with probability exceeding 1 — O(p~!) as long as
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1 logp . .
) SR AR ﬁ—ﬂ—}klog p. In particular, this sugge-

sts that if either MAR(8) = ©(1) or SNR = O(1) then
OST leads to successful model selection with high probabil-
% max{l 1

ity provided n ,m}klog p.* On the other

hand, one of the best known results for model selection us-
ing the maximum likelihood algorithm requires that n =

{Elos b log (p/k) } [40] Galso see (23], [411). This
establishes that OST (and its variants) performs near-optimally
for Gaussian design matrices provided (i) the SNR in the mea-
surement system is not too high or (ii) the energy of any nonzero
entry of 3 is not too far away from the average energy ||8]|3/k
and k scales sublinearly with p.

Remark 2. It is worth pointing out here that similar results
can also be obtained for sub-Gaussian design matrices (i.e., ma-
trices with entries given by i.i.d. bounded random variables, etc.)
using standard concentration inequalities. Note also that the pre-
ceding discussion regarding Gaussian matrices strengthens the
results of Fletcher ef al. [23] concerning asymptotic (Gaussian)
model selection using thresholding (cf. [23, Theorem 2]).

n max{l

max

C.2 Lasso versus OST

Historically, OST (and its variants) is preferred over the lasso
because of its low computational complexity. The results repor-
ted in this paper, however, bring forth another important aspect
of OST (also see [10]): OST can lead to successful model selec-
tion even when the lasso fails. Specifically, note that the lasso
solution is not even guaranteed to be unique if the minimum
singular value of the submatrix of X corresponding to the true
model is not bounded away from zero (see, e.g., [18], [19]). On
the other hand, OST does not require the aforementioned con-
dition for model selection. Note that this is in part due to the
fact that model selection using the lasso is in fact a byproduct of
signal reconstruction, whereas the OST results do not guarantee
signal reconstruction without imposing additional constraints on
X. In other words, we have established in the paper that model
selection is inherently an easier problem than signal reconstruc-
tion.

Finally, it is worth comparing the model-selection perfor-
mance of OST with that of the lasso for the cases when the
lasso does succeed. In this regard, the most general result for
model selection using the lasso states that if X is close to be-
ing a tight frame in the sense that || X||2 =~ +/p/n then the
lasso identifies the correct model with probability exceeding
1 — O(p~!) as long as (i) the nonzero entries of 3 are indepen-
dent and statistically symmetric around zero, (ii) £ = n/logp,

and (iii) MAR % [20, Theorem 1.3]. On the other hand,

assume now that the design matrix X has u(X) =< n~'/2 and
v(X) 2 n7!; there indeed exist design matrices that satisfy
these conditions (e.g., Gaussian matrices, as proved earlier, and
Alltop Gabor frames, as proved in Section IV). We then have
from Theorem 2 (resp. Theorem 4) that OST (resp. SOST) iden-
tifies the correct model with probability exceeding 1 — O(p~1)

1 klogp :
svao L g~ This

suggests that, even for the cases in which the lasso succeeds,

as long as k = n/logp and MAR = max

“4Here, we use the shorthand notation f(n) X g(n) (resp. f(n) 3 g(n)) to
indicate that f(n) == g(n) (resp. f(n) 3 g(n)) modulo a logarithmic factor.
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OST can be guaranteed to perform as well as the lasso in situ-
ations where either the energy of any nonzero entry of /3 is not
too far away from the average energy (MAR = ©(1)) or the SNR
is not too high (SNR = O(1)). Equally importantly, and in con-
trast to the lasso results reported in [20], OST is guaranteed to
attain this performance irrespective of the values of the nonzero
entries of the data vector 3.

C.3 Near-Optimality of OST

We have concluded up to this point that—under certain con-
ditions on MAR and SNR—the OST algorithm can perform as
well as the lasso and it performs near-optimally for Gaussian de-
sign matrices. We conclude this discussion by arguing that the
OST algorithm in fact performs near-optimally for any design
matrix that satisfies £(X) < n~1/2 and ¥(X) =X n~! as long
as MAR = ©(1) or SNR = O(1). In order to accomplish this
goal, we first recall the thresholding results obtained by Donocho
and Johnstone [25]—which form the basis of ideas such as the
wavelet denoising—for the case of p X p orthonormal design
matrices. Specifically, it was established in [25] that if X is an
orthonormal basis then hard thresholding the entries of Xy at
A < +/o?logp results in oracle-like performance in the sense
that one recovers (with high probability) the locations of all the
nonzero entries of 3 that are above the noise floor.

Now the first thing to note regarding the results presented
earlier is the intuitively pleasing nature of the threshold pro-
posed for the OST algorithm. Specifically, assume that X is an
orthonormal design and notice that, since u(X) = 0 in this

case, the threshold A < max { 4V/NnSNR, 1} /o2 logp pro-

posed earlier reduces to the threshold proposed in [25] and
Theorem 5 guarantees that thresholding recovers (with high
probability) the locations of all the nonzero entries of 3 that are
above the noise floor: LARy, 22 %&f = m € & Now con-
sider instead design matrices that are not necessarily orthonor-
mal but which satisfy x(X) < n~/2 and v(X) 3 n~!. Then,
we have from Theorem 5 that OST identifies (with high proba-
bility) the locations of the nonzero entries of § whose energies
are greater than both the noise power and the average signal en-

= max{ e 1}k_loguz = me

ergy per nonzero entry: LAR,, 2 SNR n

8. In particular, under the assumption that either MAR = ©(1)
(and since MAR < LAR,;,) or SNR = O(1), this suggests that the
OST in such situations performs in a near-optimal (oracle-like)
fashion in the sense that it recovers (with high probability) the
locations of all the nonzero entries of (3 that are above the noise
floor without requiring the design matrix X to be an orthonor-
mal basis.

III. RECOVERY OF SPARSE SIGNALS USING
ONE-STEP THRESHOLDING

In this section, we extend our results on model selection us-
ing OST to model-order agnostic recovery of k-sparse signals.

5Note that it trivially follows from the Welch bound [36] that there exists no
design matrix with p > n >> 1 that satisfies #(X) =< n=1/7 with v < 2. On
the other hand, there does exist a large body of literature devoted to constructing

matrices with (X)) < n=1/2 [42].
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In doing so, we also strengthen the results of Schnass and Van-
dergheynst [22] for signal recovery using thresholding in at least
three key aspects. First, we specify polynomial-time verifiable
sufficient conditions under which recovery of k-sparse signals
using OST succeeds. Second, the threshold that we specify for
the OST algorithm (Algorithm 2) does not require knowledge
of the model order k. Third, we do not impose a statistical
prior on the nonzero entries of the data vector 5. Note that,
just like [22], we limit ourselves in this exposition to recovery
of k-sparse signals in a noiseless setting; extensions of these
results to noisy settings would be reported in a sequel to this
paper. In other words, the measurement model that we study
in this section is ¥y = X and the goal is to recover the k-
sparse (3 using OST under the assumption that the true model
S§={ie {1, --,p}:|Bi] > 0} is a uniformly random k-subset
of {1,---,p}.

A. Main Result

Intuitively speaking (and as noted in the discussion in
Section II), the problem of sparse-signal recovery is inherently
more difficult than the problem of model selection. We capture
part of this intuitive notion in the following in terms of the strong
coherence property.

Definition 2 (The strong coherence property). Ann X p de-
sign matrix X having unit 3-norm columns is said to obey the
strong coherence property if the following hold

1
X)< ——— and
)< 60elogp an

v(X) < Tn

In order to better illustrate the difference between the coher-
ence property and the strong coherence property, note that we
have from Lemma 1 and Lemma 2 that Gaussian design matri-
ces satisfy the coherence property with high probability as long
asn 7, (log p)2. On the other hand, Lemma 1 and Lemma 2 sug-
gest that Gaussian design matrices satisfy the strong coherence
property with high probability as long as n > (log p)*. In other
words, there are scaling regimes in which Gaussian matrices sat-
isfy the coherence property but are not guaranteed to satisfy the
strong coherence property. We are now ready to state the main
result of this section that makes use of the notation developed
earlier in Section II.

Theorem 6 (Sparse-signal recovery using OST). Suppose that
the design matrix X satisfies the strong coherence property and

choose the threshold A = 10u]|y||2 %

Then, the OST algorithm (Algorithm 2) satisfies Pr(ﬁ # f) <
6p~! as long as

fcgmin{

Here, the probability of failure is only with respect to the true
model S (locations of the nonzero entries of 3), while ¢4, ¢5 > 0
are numerical constants given by ¢4 = 37e and ¢5 = 43.

The proof of this theorem is provided in Section V. The sig-
nificance of Theorem 6 can be best put into perspective by con-
sidering the case of the design matrix X being an approximately

u( (SCP-1)

(SCP-2)

forany p > 128.

p u‘QMAR

) (6)
Al X|3logp’ cZlogp
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tight frame in the sense that || X||2 &~ y/p/n; indeed, we have
that Gaussian design matrices satisfy this condition with high
probability [43] and that Gabor frames generated from any (unit-
norm) nonzero vector satisfy || X |2 = v/p/n (= v/n) [44). It
then follows from Theorem 6 that if X satisfies the strong co-
herence property then OST exactly recovers any k-sparse vector
B with high probability as long as k 3 £~ 2MAR; in particular,
if we assume that MAR = ©(1) then this condition reduces to
k3 1~ 2. On the other hand, low-complexity sparse-recovery
algorithms such as subspace pursuit [29], CoSaMP [30], and
iterative hard thresholding [31] all rely on the restricted isom-
etry property (RIP) [35]. Therefore, the guarantees provided in
[29]-[31] for the case of generic design matrices are limited to
k-sparse signals that satisfy £ < p~!, which is much weaker
than the k& 3 p~2 scaling claimed here.® We conclude this sec-
tion by pointing out that if one does have knowledge of the true
model order then it can be shown through a slight variation of the
proof of Theorem 6 that SOST (the sorted variant of the OST)
can also recover sparse signals with high probability—the only
difference in that case being that the constant ¢5 in Theorem 6
gets replaced with a smaller constant ¢}, = +/800.

IV. WHY GABOR FRAMES?

Our focus in Section II and Section III has been on estab-
lishing that OST leads to successful model selection and sparse-
signal recovery under certain conditions on three global param-
eters of the design matrix X: p(X), v(X), and || X||2. As noted
earlier, one particular class of design matrices that satisfics these
conditions is the class of random sub-Gaussian matrices. In con-
trast, our focus in this section is on establishing that Gabor
frames—which are collections of time- and frequency-shifts of
a nonzero seed vector in C"—also tend to satisfy the afore-
mentioned conditions on the matrix geometry. Note that Gabor
frames constitute an important class of design matrices because
of the facts that (i) Gabor frames are completely specified by a
total of n numbers that describe the seed vector, (ii) multiplica-
tions with Gabor frames (and their adjoints) can be efficiently
carried out using algorithms such as the fast Fourier transform,
(iiiy Gabor frames arise naturally in many important application
areas such as communications, radar, and signal/image process-
ing, and (iv) there exist deterministic constructions of Gabor
frames that (as shown next) are nearly-optimal in terms of the
requisite conditions on p(X), »(X), and || X 2.

A. Geometry of Gabor Frames and Its Implications

A (finite) frame for C™ is defined as any collection of p >
n vectors that span the n-dimensional Hilbert space C* [49].
Gabor frames for C™ constitute an important class of frames,
having applications in areas such as commusications [50] and
radar [38], that are constructed from time- and frequency-shifts
of a nonzero seed vector in C™. Specifically, let ¢ € C™ be a
unit-norm seed vector and define T to be an n x n time-shift

6Note that the & X ! claim is an easy consequence of the GerSgorin circle
theorem [45]; see, for example, [39],[46]-[48)].
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matrix that is generated from g as follows

5 gn g2

T(g)= |7 % ™
: : . n
In  Gn-—1 g1

where we write T = T(g) to emphasize that T is a matrix-
valued function on C™. Next, denote the collection of n samples
of a discrete sinusoid with frequency 272, m € {0,---,n —
1} as wy, = [e/2730 eﬂ"%("“‘)]T. Finally, define the
corresponding n x n diagonal modulation matrices as Wy, =
diag(wm ). Then, the Gabor frame generated from g is ann x n?
block matrix of the form

X = [WOT wiT Wn_lT}. ®)
In words, columns of the Gabor frame X are given by down-
ward circular shifts and modulations (frequency shifts) of the
seed vector g. We are now ready to state the first main result
concerning the geometry of Gabor frames, which follows di-
rectly from [44].

Proposition 1 (Spectral norm of Gabor frames [44]). Ga-
bor frames generated from nonzero (unit-norm) seed vectors are
tight frames; in other words, we have that || X ||z = /.

Recall from Theorem 6 and the subsequent discussion that
design matrices with small spectral norms are particularly
well-suited for recovery of k-sparse signals. In this regard,
Proposition 1 implies that Gabor frames are the best that one
can hope for in terms of the spectral norm. The next result that
we prove concerns the average coherence of Gabor frames.

Theorem 7 (Average coherence of Gabor frames). Let X
be a Gabor frame generated from a unit-norm seed vector g €
C™. Then, using the notation gmax = max; |g;| and gumin =
min; |gi|, the average coherence of X can be bounded from the
above as follows

1 gmax(v/1 = gmin) + 1 — nggxin

X)) <
v(X) < n2 -1

9
Proof: In order to facilitate the proof of this theorem, we

first map the indices of the columns of X from {1,---,n%} to

C=1{0,--,n—1} x {0,---,n — 1} as follows

K ((modn)—l, {Z;;lD

In words, k(i) = (¢, m) signifies that the ith column of X cor-
responds to the (£ 4 1)th column of W,,,T". Next, fix an index i
(resp. k(%) = (¢,m)) and make use of the above reindexing to
write

(10)

712

Z(Xn(i)»xn(j)> = Z

<X2,m» xf',m’)

i=1 (¢ym")ec
e (&,m")#(6,m)
n—-1 n—1 n—1
= Z Z (Xe,m,Xz',m') + Z <X£,m1 Xf,m’)- (11)
¢'=0 m’=0 m'=0
AF T4 #m
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Finally, note that we can explicitly write the columns of X using
(8) for any (£, m) € C as follows

) ejzwig;—(n-l)]T

9(n—20), (12)

= [90-0,e77%°

where we use the notation g(,),, as a shorthand for g, mod n-

The rest of the proof now follows from simple algebraic ma-
nipulations. Specifically, it is easy to see from (12) that the first
term in (11) can be simplified as

Z Xy, maxf’m'

Xeom

M |

=0 m
o#L
n ol n—1 .
DL Sty [
- gch_e)ng(q"‘e')n Z QJZT n (m m)
9=1¢'=p m=0
O #L
n n—1 et 1
3 q- 7
- g&-ﬁ}ng(q—é')n Z 2= (m/—m)
9=20/=0 m/=0
e';ee
(@) nrl
+n 9(1-0), 91— = PG(1-0), Ga-ey, (13)
(1-£) (1-0)
oy, =0
o £

where (a) in the above expression is a consequence of the fact
that 3771, /275 (m'=m) = 0 for any fixed ¢ € {2, -, n}.
Likewise, we can simplify the second term in (11) as follows

731
Z (XZ,m,xZ,'m')
m'=0
ms#m
n n~1
- Z qz‘q_e) g(q—f) Z ejQ?t'g%("I,'_Tﬂ)
pace n -
m'#m
n 9 n-l . 5 n-1
ior 4=t L.
= 9-0." D ST 4 gug, | D01
q=2 m/=0 =0
m'#m m’ shm
n
Q] 2 2
= Z ‘g(fi“[»)n + (73; - 1)lg(1—-€)n
g=2
2
= ~1+n|ga-p,| (14)

where (b) follows from the fact that >, 2m ST (m~m)

-1 forany fixed g € {2, n}.
To conclude the theorem, note from (11), (13), and (14) that
we can write

m’sm

n?

> (xixy)
j=1
i

max
i€{l,--,n?}

n--1

* 2
R9(1-0), Z 9a-ey, = L+nlga-p,
=0
0'#£E

n
ngry 9
s=1

S#ET

= max
£

(¢)
< max

re€{l,,n}

+ max ] — 1+ n|g,|?
re{l,--,n}
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n
<n max +1—ng2.
— TE{I,“»,TL} |gf‘| s_zl |gS| gmm
SET
(d)

< ngma.x(\/_ gmm) +1- 7l9mm (15)

Here, (c¢) mainly follows from the triangle inequality and a sim-

ple reindexing argument, while (d) mainly follows from the

Cauchy-Schwarz inequality since Z%l lgs] = llgllr = lgr] <
SFT

/T — gmin- The proof of the theorem now follows by dividing
the above expression by n? — 1. 0

In words, Theorem 7 states that the average coherence of Ga-
bor frames cannot be too large. In particular, it implies that Ga-
bor frames generated from unimodal (unit-norm) seed vectors
(i.e., seed vectors characterized by gmin < gmax < n~?)
satisfy #(X) < n~L. On the other hand, recall that the Welch
bound [36] dictates that 1(X) > (n + 1)~/ for Gabor frames.
It is therefore easy to conclude from these two facts that Gabor
frames generated from unimodal seed vectors are automatically
guaranteed to satisfy the coherence property (resp. strong coher-
ence property) as long as u(X) = (logp)~1/? (resp. p(X) 3
(logp)~1). In the context of model selection and sparse-signal
recovery, Theorem 7 therefore suggests that Gabor frames gen-
erated from unimodal seed vectors are the best that one can hope
for in terms of the average coherence.

Finally, recall from the discussions in Section. II and
Section III that—among the class of matrices that satisfy the
(strong) coherence property—design matrices with small worst-
case coherence are particularly well-suited for model selection
and sparse-signal recovery. In the context of Gabor frames, the
goal then is to design unimodal seed vectors that yield Gabor
frames with the smallest-possible worst-case coherence. This,
however, is an active area of mathematical research and a num-
ber of researchers have looked at this problem in recent years;
see, e.g., [8]. As such, we can simply leverage some of the ex-
isting research in this area in order to provide explicit construc-
tions of Gabor frames that satisfy the (strong) coherence prop-
erty with nearly-optimal worst-case coherence.

Specifically, let n > 5 be a prime number and construct a
unimodal seed vector g € C" as follows
mawemﬂ‘m%ﬂi] !
75

g=[dre  Leitn® (16)

71
The sequence { -\~/1- el } is termed as the Alltop sequence

[7] in the literature. This sequence has the property that its au-
tocorrelation decays very fast and, therefore, it is particularly
well-suited for generating Gabor frames with small worst-case
coherence. In particular, it was established recently in [8] that
Gabor frames generated from the Alltop seed vector ¢ given in
(16) satisfy

1
X) = max [(x:,%5) < —. 17
:u'( ) jl;ﬁ]‘( 1 ]>I \/1—1' ( )
In addition, since we have that gmin = gmax = n~ /2 for

the Alltop seed vector, it is easy to check using Theorem 7
that the average coherence of Alltop Gabor frames satisfies
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v(X) < (n+1)7! < pu(X)/v/n. An immediate consequence
of this discussion is that all the results reported in Section II and
Section III in the context of model selection and sparse-signal
recovery using OST apply directly to the case of Alltop Gabor
frames. In particular, it follows from Theorem 6 that Alltop Ga-
bor frames together with OST are guaranteed to recover most k-
sparse signals—regardless of the statistical dependence across
the nonzero entries of f—as long as k£ 3 n and MAR = O(1).
In contrast, the only other results available in the sparse-signal
recovery literature for Alltop Gabor frames are based on the
higher-complexity basis pursuit [3] and require the nonzero en-
tries of 3 to be independent and statistically symmetric around
zero for the case when v/n 3 k 3 n [37], [38].

V. PROOFS OF MAIN RESULTS

In this section, we provide detailed proofs of the main results
reported in Section II and Section III. Before proceeding fur-
ther, however, it is advantageous to develop some notation that
will facilitate our forthcoming analysis. In this regard, recall that
the true model § is taken to be a uniformly random k-subset of
[p] = {1,- -, p}. We can therefore write the data vector 3 under
this assumption as concatenation of a random permutation ma-
trix and a deterministic k-sparse vector. Specifically, let z € CP
be a deterministic k-sparse vector that we write (without loss of
generality) as

T
Ei(zl,~~,zk, 0,-‘-,0) (18)
—_—— N —

= 2eCk  (p—k) times

and let P, be a p x p random permutation matrix; in other words,

. T
P7r = [e‘ll'l Cro eﬂ'p] (19)
where e; denotes the jth column of the canonical basis I and
II = (m,---,7mp) is a random permutation of [p]. Then, the

assumption that the model S is a random subset of [p] is equiv-
alent to stating that the data vector /3 can be written as § = P, Z.
In other words, the measurement vector y can be expressed as

y=XB+n=XPZ+n=Xnz+7 (20

where II = (7, - - -, w; ) denotes the first k elements of the ran-
dom permutation II, X1; denotes the n x k submatrix obtained
by collecting the columns of X corresponding to the indices in
I1, and the vector z € C* represents the k nonzero entries of 3.

A. Proof of Theorem 1

The general road map for the proof of Theorem 1 is as fol-
lows. Below, we first introduce the notion of (k, €, 8)-statistical
orthogonality condition (StOC). We next establish the relation-
ship between the StOC parameters and the worst-case and av-
erage coherence of X in Lemma 3 and Lemma 4. We then pro-
vide a proof of Theorem 1 by first showing that if X satisfies
the StOC then OST recovers S with high probability and then
relating the results of Lemma 3 and Lemma 4 to the coherence
property.

Definition 3 ((k, ¢, §)-Statistical orthogonality condition).
Let IT = (mq, -+, mp) be a random permutation of [p], and de-
fine IT = (my, - -, mx) and I1° = (w41, -+, 7p) forany k € [p].
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Then, the n X p (normalized) design matrix X is said to sat-

isfy the (k, €, §)-statistical orthogonality condition if there exist

€,6 € [0,1) such that the inequalities
(Xt X1~ 1)zlloo < €l 2ll2

| XHe Xnzlloo < ellzll2

(StOC-1)
(StOC-2)

hold for every fixed = € C* with probability exceeding 1 — §
(with respect to the random permutation II).

Remark 3. Note that the StOC derives its name from the fact
that if X is a p X p orthonormal matrix then it trivially satisfies
the StOC for every k € [p] with e = § = 0. In addition, al-
though we will not use this fact explicitly in the paper, it can be
checked that if X satisfies (k, €, §)-StoC then it approximately
preserves the £;-norms of k-sparse signals with probability ex-
ceeding 1 —¢6 as long as k < ¢~ 2. Having defined StOC, our goal
in the next two lemmas is to relate the StOC parameters k, €, and
& to the worst-case and average coherence of the design matrix
X.

Lemma 3. Let IT = (my, - - -, mi) denote the first & elements
of a random permutation of [p] and choose a parameter a > 1.
Then, for any ¢ € [0,1), k¥ < min {e2v72,(1 + a)~'p}, and
fixed z € C*, we have

Pr ( {X does not satisfy (StOC-1 )})

(e = VEv)?

< 4kexp ( - m) (21)

Proof: The proof of this lemma relies heavily on the so-
called method of bounded differences (MOBD) [51]. Specif-
ically, we begin by noting that ||(XiXn — I)z|| =
max; | 35,4 7j (X, Xx,)|. Therefore, for a fixed index i, and
conditioned on the event A; = { m=1 }, we have the follow-
ing equality from basic probability theory

A )

k
=Pr (f Dz, xm,)| > el

=1
i#

k
Pr (13 260 %0)] > el
j=1

i

Ai/) . (22)

Next, in order to apply the MOBD to obtain an upper bound
for (22), we first define a random (k — 1)-tuple II7¢ =
(myy+++y Mim1, Tit1, -+, Tx) and then construct a Doob martin-
gale (Mg, My, - - -, My_1) as follows

k
Mo = E[Zzﬂxiuxw,) Ai/], and
i=1
J#i
k o
—t
7

where 71'1__1‘} , denotes the first £ elements of I1~¢. The first thing
to note here is that we have from the linearity of (conditional)
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Me(r) — Me(s)| = (ZZJ [(Xi’ X )T eyt = } E[(":z’ Xy ) [T em1s g —Sv-Ai’})(
< Z (ZJ( [ Xit X“: 7rl—>£ 1»7713 = =r Ay ] E[ Xit, X”: ”Tl_—i)l—l’ﬂ-é_i = S’Ai']
J#i
= > lalldes]+ D2 Jzslldes]. (25)
J< 41 i> 641
J#i J#i
expectation <2ulad el + 5y 3 lal). @D
_7> £+1
[0o] = | 3 2[5, Av ]|
i o
We have now established that (Mg, My, - - -, My—1) is a (real-
< AR ity Xors it i 0y 4¥1, y AVl fm ]
- z#:z Iz} [l RX X, ) |A J or complex-valued) bounded-difference martingale sequence
’ ) with |My — My_1| < 2ud, for £ = 1,---,k — 1. Therefore,
(2) Z 2] Z 0, under the assumption that k < €?v~2 and since it has been es-
o 7 p i1 %q) tablished in (23) that | Mp| < Vv IIz]|2, it is easy to see that
a7’ k
(b) 1 3! i’
< vzl < VEev|z|e2 (23) Pr <’;%(Xzaxm>| >5”Zi|2.41>

where (a) follows from the fact that, conditioned on A;/, m;
has a uniform distribution over [p] — {i'}, while (b) is mainly a
consequence of the definition of average coherence. In addition,

if we use 7, * to denote the ¢th element of II~* and define
k
Mé(r) = ]E[Z 2 (Xt Xn; ) Wf_i,e_l,wf =7, Ay] 24)
=
for{=1,---, k — 1then, since (Mp, M;,- -+, Mj_1) is a Doob

martingale, it can be easily verified that |M, — M;_1] is upper
bounded by sup,. [IWg(r) - Me(s)] (see, e.g., [32]).

Now in order to upper bound sup,. , [Me(r) — Mq(s)], no-
tice that we can bound | M,(r) — M,(s)} as in (25). In addition,
we have that for every j > ¢+ 1,7 # i, the random variable
7; has a uniform distribution over [p] — {#;,_,,7,#'} when
conditioned on {7,’,_,,7;* = r,i'}, whereas 7; has a uni-
form distribution over [p] — {m%,_;,s, 1’} when conditioned
on{n7", ,,m; " =s,i'}. Therefore,we getVj > {1, # i,

2
i ,.7‘ p— e_l\xl 7Xr <Xi’,Xs> Sp——_—-ﬁ—l' (26)
Similarly, it can be shown that ) ;<41 !szdg,jl < |Zg+1]2/.1,
G
when i < 4, Y <o Iszdg,j{ < |2¢|2u when i = €+ 1,
J#i

and Y j< o1 |25|des] < (Jze| + I{%)Qn wheni > £+ 1.
J#

Consequently, regardless of the initial choice of ¢, we obtain

5:15) [Me(r) — Me(s)]

J#
<Pr (|1Mk_1 - Mo! > €llz]2 — \/EI/ HZHQ

g4exp(_ (e—x/f?vmzzn%)

k=1
16p2 5 d?
=1
where (c) follows from the complex Azuma inequality for
bounded-difference martingale sequences (see Lemma 5 in
Appendix A). Further, it can be established through routine cal-
culations from (27) that Y p—1 d7 < (2 + a~1)?||z||3 since

k < p/(1 + a). Combining all thesc facts together, we finally
obtain that

Pr (H(X%}Xn -1zl > ellzlla)

(2 k Pr <| Z:zxxm,xﬁjﬂ > eHZHz)

J#i

«)

(28)

sz) Pr(Ay)

=1 0P (|5 x| > el

ir=1 =
J#i

(@ (e — Vkv)?
< 4kexp ( 16(2+a‘1)2u2> 29)
where (d) follows from the union bound and the fact that the 7r;"s
are identically (though not independently) distributed, while (e)
follows from (28) and the fact that #; has a uniform distribution
over [p]. 0O
Lemma 4. Let Il = (my,- -, 7x) and I1° = (mpq1, -+, 7p)
denote the first k& and the last (p ~ k) elements of a random
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Mo(r) — Mg(s)‘ = ; Z zj (E [(xi/,x,rj)
3

Tis0-1,T¢ =T, -Ai’] - EI:<X'L"» erj>

[CESE
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T1—¢—1,T¢ = Sy'Ai’])i

(xi’ y Xs

< lzg}}(xz-:,x,) — (xir,Xs)| +

Zl“]l <2u(lz l+ Z;>e| J1| ) (32)
\—W———’

p—_f—1 - 5o

=dg

permutation of [p], respectively, and choose a parameter a >
1. Then, for any € € [0,1), k < min {e?v~2,(1 + a)"'p}, and
fixed z € C*, we have

Pr ( {X does not satisfy (StOC—Z)})

—JVEv)?
_&—\/_y—z)z . (30)
8(1+a=)u

Proof: The proof of this lemma is very similar to that of
Lemma 3 and also relies on the MOBD. To begin with, we note
that || Xfe Xnz||_

lp—k] = {1,---,p — k} and #{ denotes the ith element of
II¢. Then, for a fixed index ¢ € [p — k], and conditioned on
the event Ay = {n{ = 7'}, we again have the following simple

equality
x)

k
(IZZ] x7r°,X7rJ > 6”2”2
=1
_Pr (1zzj<xi,,xr,.>| > ellz]z

J=1

§4(p—k)e><p<—

= Max;c[p—k] ‘sz{x,rf,x,rj)l, where
J

Ai/). 3D

Next, asin the case of Lemma 3, we construct a Doob martingale
sequence (Mp, M, - - -, My) as follows

My = [zk:zj (%47, X, )].A,/] and
=1

\..

M= T

M, =E|

zj(xi’7xﬁj> Wl—)lyAi’}a = 1,--k

[
Il
s

where 71,0 now denotes the first £ elements of II. Then, si-
nce 7; has a uniform distribution over [p] — {i’} when con-
ditioned on A; y 1 <
Vk v ||2||2. Therefore, the only remaining thing that we need
to show in order to be able to apply the complex Azuma in-
equality to the constructed martingale (Mp, M, - - -, M}) is that
| My — Mg_q| is suitably bounded.

In this regard, we make use of the notation M,(r) =
E[E?:l 25 (Xif,Xﬂ-j>l7T1_)g_1,7T'( T, Az»] and note that
| M (r) — My(s)| can be bounded as in (32), which implies that
sup, , [Me(r) — My(s)] < 2ude, £ =1,---, k. Consequently,
we have now established that (M, M7, - - -, M}) is a bounded-
difference martingale with |AM, — M,_;| < 2ud,. Therefore,

since & < ¢?v~2 and |Mo| < Vkv ||z]|2, we once again have
from the complex Azuma inequality that

k
Pr (| s tseowe )| > ol
Pr (IMk — Mo| > €l|zllz — VEV | ]2

(;) sexp (_ (6"\/EI/)22>

8(1+a 1)y
where (a) follows by noting that Z?:l d? < (1+4+a 1)?|2]3
since k < p/(1 + a). Combining all these facts together, we
finally obtain the claimed result as follows

A )

(33)

Pr <||)<.'§1£an||oo > enz||2)

&)

k
< (p—k) Pr <| Zzﬂxwg,xﬂjﬂ > fiiz||2>

k
ZI’ (lZz] (xiry %, )| > ez A

=1 J=
24(p—k>exp(— (e Ry )

o) Pr(40)

(34)

<(p-—k

8(1+a1)2u2

where (b) follows from the union bound and the fact that the 7¢’s
are identically (though not independently) distributed, while (¢)
follows from (33) and the fact that 7 has a uniform distribution
over [p]. O

Note that Lemma 3 and Lemma 4 collectively prove through
a simple union bound argument that an n x p design ma-
trix X satisfies (k,€,0)-StOC for any ¢ € [0,1) with § <

4pexp (——M) for any a > 1 as long as we have that
k < min {?v72,(1 4 a)
proof of Theorem 1.
Proof (Theorem 1): We begin by making use of the no-
tation developed at the start of this section and writing the
signal proxy f = X%y as f = XUXpz + XUy Now,
let II° = (@g41,---,7p) denote the last (p — k) elements
of IT and note that we need to show that “fl_[r‘“oo < Aand
Milie(1,... &} | fr:] > X in order to establish that § = S.
In this regard, we first assume that X satisfies (k, €, §)-StOC

and define A, = max {—6“2”2, =32v0%logp } forany t €
{0,1). Next, it can be verified through Lemma 6 in Appendix A

p} We are now ready to provide a
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that 7 = XHy satisfies ||iillec < 24/0%logp with probabil-
ity exceeding 1 — 2(y/2m log pp) ~1. Now define the probability
event

G= {{X satisfies (StOC-1) and (St0C-2) } )

N{lill <2 anogp}} (35)

and notice that we have Pr(G) > 1 — & — 2(y/2rlogpp)~!
Further, conditioned on the event G, we have

@
[ Fnelloe < I1XieXn2lloo + | Xi{ello

&) (e
< ¢llzllz + 24/0%logp < Ac

where {a) follows from the triangle inequality, (b) is mainly a
consequence of the conditioning on the event G, and (c} follows
from the definition of A.. Next, we define r = (XX — I)z
and notice that, conditioned on the event G, we have for any
i € [k] = {1, - -, k} the following inequality

‘fmf =

(d)
2 ,Bmin - €”Z”2 -2

(36)

2 + 75 + 7| > [2i] = [I7lloo — 17lloo

02 logp (2) Bmin - /\e - (37)
Here, (d) follows from the conditioning on G, while (e) is a
simple consequence of the choice of A.. It can therefore be
concluded from (36) and (37) that if X satisfies (k, €,6)-StOC
and the OST algorithm uses the threshold A, then we have
Pr(§7é S) < Pr(G°) as long as Bmin > 2A.

Finally, to complete the proof of this theorem, we let k <
n/(2logp) and fix € = 10pu+/2logp. Then, the claim is that
X satisfies (k, €,0)-StOC with § < 4p~1. In order to estab-
lish this claim, we only need to ensure that the chosen param-
eters satisfy the assumptions of Lemma 3 and Lemma 4. In
this regard, note that (i) ¢ < 1 because of (CP-1), and (ii)
Vkv < & because of the assumption that k < n/(2logp) and
(CP-2). Therefore, since the assumption p > 128 together with
k < n/(2logp) implies that 16(2 + a=1)? < 72, we obtain

exp (~— 16(31‘::’;”))2” ) < p~2. We can now combine this fact
with the previously established facts to see that the threshold

A = max { 210p+/nSNR, Ii—t\/ﬁ} v/202 log p guarantees that

Pr(S # S) < 6p~! aslong as n > 2klogp and Bmin > 2X.
Finally, note that

k1
Bnin > ——4\/02 logp <= n > =" CaX 0P

SNRmin
and

csklogp\” /2
Brmin > 20us/2n02 logp SNR <= n > ( VAR .

This completes the proof of the theorem. (]

B. Proof of Theorem 5

Proof (Theorem 5): We begin by making use of the notation
developed earlier in this section and conditioning on the event
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G defined in (35) with ¢ = 10u+/2log p. Then, it is easy to see
from the proof of Theorem 1 that the estimate Sis a subset of
because of the fact that || fire||co < A.

Next, assume without loss of generality that 2; By and
note from (37) that |fr,| > |B;| — Aforany ¢ € {1,---, k}.
Then, since 7; € S if and only if [fr:| > A, we have that §; >
2\ = m; € &. Now define M to be the largest integer for
which Bary > 2 holds and note that By > 2X = By >
2\ = m; € S foreveryi € {1,---, M}, which in turn implies
15 -5 | < (k — M). Finally, note that

Biary > —4\/02 logp < LARy > C2k81;)§p

and

) 1k
Biary > $204/2n0% logp SNR <= LARy > cilro#.

This completes the proof of the theorem since the event G holds
with probability exceeding 1 — 6p~! O

C. Proof of Theorem 6

The first key result that we will need to prove Theorem 6
is regarding the expected spectral norm of a random principal-
submatrix of (X®X — ). The following result is mainly due
to Tropp [6] and it was first presented in the following form by
Candeés and Plan in [20].

Proposition 2 ([6], [20]). Let IT =
permutation of [p] and define IT =
Then, for ¢ = 2log p, we have

(& [t - 1))

[ok x |21
§21/q(3oﬂlogp+13 M) (38)

provided that k& < p/4]|X||3. Here, the expectation is with re-
spect to the random permutation IT.

Using this result, it is easy to obtain a probabilistic bound
(with respect to IT) on the minimum and maximum singular val-
ues of a random submatrix of X since, by the Markov inequal-

ity, we have that Pr (| X Xn— 1|}, 2 <) < ¢ E||| XF Xn -

(@1, -+, 7p) be a random
(w1, -+, m) forany k € [p].

I Hg] . The following result is simply a generalization of the cor-
responding result presented in [20].

Proposition 3 (Extreme singular values of a random subma-
trix). Let II = (1, - - -, m) denote the first & elements of a ran-
dom permutation of [p] and suppose that u(X) < (¢} logp) ™!
and k < p/(cs?|| X||%logp) for numerical constants ¢; = 60e
and c4 = 37e. Then, we have that

Pr(|XHxn - 1], 272 <27t (39)
Note that Proposition 3 guarantees that, under certain conditions
on u(X) and k, every singular value of most n x k submatrices

of X lies within (v'1 —e=1/2,v/1 + e~1/2 ), We are now ready
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Fig. 2. Numerical comparisons between the performance of the SOST algorithm (Algorithm 3) and the lasso [17] using an Alltop Gabor frame. The
n x p design matrix X has dimensions n = 127 and p = n?2, the MAR of the signals is 1, the SNR in the measurement system is 10 dB, and
the noise variance is ¢2 = 10~2. The (forward and adjoint) matrix—vector multiplications are carried out using the fast Fourier transform, while
the lasso is solved using the SpaRSA package [53] with the regularization parameter set to 7 = 24/202 logp [20]. (a) Plots of the fraction of
detections, defined as fp = |S N 8|/k, and the fraction of false alarms, defined as fra = (|S] — |S N S])/|S|, versus the model order (averaged
over 200 independent trials) for both SOST and the lasso. (b) Plots of the amount of time (averaged over 200 independent trials) that it takes
SOST and the lasso to solve one model-selection problem versus the model order.

to provide a proof of Theorem 6 that relies on this key result as
well as on Lemma 3 and Lemma 4.

Proof (Theorem 6): The proof of this theorem follows
along somewhat similar lines as the proof of Theorem 1. Specif-
ically, by making use of the notation developed at the start of
this section, we write f = Xty = X" X112 and first argue that
the set of indices Z = {i € [p] : |fi]| > A} is the same as the
true model S with high probability. Then, we make use of the
union bound and argue using Proposition 3 that B = [3 with high
probability.

In this regard, recall that it was established in the proof of
Theorem 1 using Lemma 3 and Lemma 4 that if X obeys the
coherence property then it satisfies (k, ¢, §)-StOC with ¢ =
10p4/2Togp and § < 4p~! as long as k < n/(2logp). This
fact therefore implies that, under the assumptions of the theo-
rem,’ the1 following inequalities hold with probability exceeding
1—4p™*:

1fnelloo = | Xffe Xnizlloo < €llz]l2 (40)
and
i il = Bmin — XH - o0
iell gl 2 Pmin = N = D21
Z ,Brnin - €“2"“2 (41)

Also note that, conditioned on £ = {”XI}TIXH - IH2 < e_1/2},
we can write

V1—eV2|zlla < | Xnzlla < V14+e /2 |z]l2.  (42)
S~~~
Ey

Therefore, if we condition on the event £ then it trivially fol-
lows from the assumptions of the theorem and (40) and (41)

7Note that the assumptions of the theorem trivially guarantee the condition
k < n/(2logp) since || X||3 > p/n from elementary linear algebra.

that Z = S with probability exceeding 1 — 4p~! since (i)
Z C 8 because || fiiclloo < ——% = A (cf. (40), (42)),

and (i) Z D S because £ < u~2MAR/(cj logp) implies that
Brmin — 6”2”2 >\ = minie{ly...‘k} |f1|—i] > A (cf. (41), (42)).
Consequently, we conclude that (X7)t = (XF X)X} with
high probability when conditioned on the probability event &,
which in turn implies that BI = (X7) Xnz = Bs with proba-
bility exceeding 1 — 4p~! when conditioned on £. The claim of
the theorem now follows trivially from the union bound and the
fact that Pr(£°) < 2p~1! from Proposition 3 since X satisfies
the strong coherence property and k < p/(c3|| X ||2logp). O

VI. CONCLUSIONS

In the modern statistics and signal processing literature, the
lasso has arguably become the standard tool for model selec-
tion because of its computational tractability [17] and some re-
cent theoretical guarantees [2], [18]-[20]. Nevertheless, it is de-
sirable to study alternative solutions to the lasso since (i) it is
still computationally expensive for massively large-scale infer-
ence problems (think of p in the millions), (ii) it lacks theoret-
ical guarantees beyond k >~ p~! for the case of generic design
matrices and arbitrary nonzero entries, and (iii) it requires the
submatrices of the design matrix to have full rank, which seems
reasonable for signal reconstruction but appears too restrictive
for model selection.

In this paper, we have revisited two variants of the oft-
forgotten but extremely fast OST algorithm for model selection.
One of the key insights offered by the paper in this regard is that
polynomial-time model selection can be carried out even when
signal reconstruction (and thereby the lasso) fails. In addition,
we have established in the paper that if the n x p design ma-
trix X satisfies (X) < n~'/2 and v(X) <X n~! then OST can
perform near-optimally for the case when either (i) the MAR of
the signal is not too small or (ii) the SNR in the measurement
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Fig. 3. Partial model-selection performance of the OST algorithm (averaged over 200 independent trials) corresponding to an Alltop Gabor frame in
€97, The MAR of the signals in this experiment is 1, the SNR in the measurement system is 3 dB, and the noise variance is o2 = 1072.

system is not too high. It is worth pointing out here that some
researchers in the past have observed that the SOST algorithm
at times performs similar to or better than the lasso (see Fig. 2
for an illustration of this in the case of an Alltop Gabor frame
in C!27). One of our main contributions in this regard is that
we have taken the mystery out of this observation and explic-
itly specified in the paper the four key parameters of the model-
selection problem, namely, p(X),v(X), MAR, and SNR, that
determine the non-asymptotic performance of the SOST algo-
rithm for generic (random or deterministic) design matrices and
data vectors having generic (random or deterministic) nonzero
entries; also, see [10] for a comparison of our results with cor-
responding results recently reported in the literature.

The second main contribution of this paper—which com-
pletely sets it apart from existing work on thresholding for
model selection—is that we have proposed and analyzed a
model-order agnostic threshold for the OST algorithm. The sig-
nificance of this aspect of the paper can be best under-
stood by realizing that in real-world applications it is of-
ten easier to estimate the SNR and the noise variance in
the system than to estimate the true model order. In particu-
lar, we have established in the paper that the threshold A =

max {%10,u\/nSNR, ﬁ\/i} v/202%logpfort € (0,1) enables
the OST algorithm to carry out near-optimal partial model selec-
tion. It is worth pointing out here that this threshold is rather
conservative in nature for small-scale problems (see (5)) and
we believe that there is still a lot of room for improvement as
far as reducing (or eliminating) some of the constants in the
threshold is concerned. In particular, it is easy to see from the
proof of Theorem 1 that the constant 10 in the threshold is
mainly there due to a number of loose upperbounds; in fact,
this constant was 24 in a conference version of this paper [5]
and we believe that it can be reduced even further. Some of the
numerical experiments that we have carried out in this regard
also seem to lend credence to our belief. Specifically, Fig. 3
reports the results of one such experiment concerning partial

model-selection performance of the OST algorithm in terms

. . . d S|
of the metrics of fraction of detections, fp et |—SQ—S|, and

def

181-1503]
i S|

200 independent trials. In this experiment, the n X p design
matrix X corresponds to an Alltop Gabor frame in C%%7, the
noise variance is ¢2 = 1072, the MAR and the SNR are cho-

sen to be 1 and 3 dB, respectively, and the initial threshold

is set at As < max { 1¢/juy/nSNR, <=2 /202 logp with
t s

t = (v/2 -1)/v2and ¢ = 2t. It can be easily seen from
Fig. 3 that OST successfully carries out partial model selection
(fra = 0) even when the threshold is set at 0.6\, which proves
the somewhat conservative nature of the proposed threshold in
terms of the constants.

Finally, the third main contribution of this paper is that we
have extended our results on model selection using OST to low-
complexity recovery of sparse signals. In particular, within the
area of low-complexity algorithms for sparse-signal recovery
(such as, matching pursuit [28], subspace pursuit [29], CoSaMP
[30], and iterative hard thresholding [31]), we have for the first
time specified polynomial-time verifiable sufficient conditions
under which recovery of sparse signals having generic (ran-
dom or deterministic) nonzero entries succeeds using generic
(random or deterministic) design matrices. In addition, we have
also provided a bound in the paper on the average coherence
of generic Gabor frames and used this result to establish that an
Alltop Gabor frame in C™ can be used together with the OST al-
gorithm to successfully carry out model selection and recovery
of sparse signals irrespective of the phases of the nonzero entries
even if the number of nonzero entries scales almost linearly with
n.

fraction of false alarms, fpa , averaged over

APPENDIX
A. Concentration Inequalities

In this appendix, we collect the various concentration inequal-
ities that are used throughout the paper.

Proposition 4 (The Azuma inequality [54]). Let (Q, F, P) be
a probability space and let (Mp, My, - - -, M,,) be a bounded dif-
ference, (real-valued) martingale sequence on (€2, F,P). That
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iS, }E{.{M‘i] = M,'_l and !Mz — Mi—ll S bl for cvery i =
1,---,n. Then, for every ¢ > 0, we have

2
Pr(|M, — Mo| > €) < 2exp | — +> (43)
237 12

i=1

Proposition 5 (Inner product of independent Gaussian ran-
dom vectors [48]). Let x,y € R”™ be two random vectors that
are independently drawn from NV'(0, 02 I) distribution. Then, for
every € 2> (0, we have

Pr(Kva)lZG)iQeXP(“M)- (44)

Since we are mainly concerned with complex-valued random
variables in this paper, it is helpful to state a complex version of
the Azuma inequality. The following lemma is an easy conse-
quence of Proposition 4.

Lemma 5 (The complex Azuma inequality). Let (Q, F,P)
be a probability space and let (Mg, M, - - -, M,,) be a bounded
difference, complex-valued martingale sequence on (2, F, P).
That is, E[MZ] = M;_; € C and further lMg — M'_ﬂ < b; for
every ¢ = 1,---,n. Then, for every € > 0, we have

62

Pr(|M, — Mo| > €) < dexp| — ——
43 v?
i=1

Proof: To establish this lemma, first define S; = Re(M;)
and T; = Im(A4;). Further, notice that since E[{M;] = M;_, and
|M; — M;_1| < b;, we equivalently have that: (i) E[S;] = S;_1
and ]Si-‘S‘_l' < bi, and (ll) ]E[Tz] = Ti—-l and IT;“T'-I{ < bi.
Therefore, we have that (Sp, 51, -+, S,) and (Lo, T4, -+, T})
are bounded difference, real-valued martingale sequences on
(Q, F,P) and hence

(45)

Pr(|M, — Mp| > ¢€)

(a) € €
SPr(|S:—S|2—=|+Pr{|Tn—To| > —=
(1 =012 J5) e (1m0 )
(b) €2
<dexp| — —5— (46)
4567
i=1

where (a) follows from a simple union bounding argument and
(b) follows from the Azuma inequality. O

Lemma 6 ({,,-Norm of the projection of a complex Gaussian
vector). Let X be a real- or complex-valued nn X p matrix having
unit £2-norm columns and let 7 be a p x 1 vector having entries
independently distributed as CA(0, 02). Then, for any € > 0,
we have

4p exp(—€?/2)
Pr (|| xH > —_—_——.
r (| X" nleo 2 o€) < N

47

Proof: Assume without loss of generality that o = 1, since
the general case follows from a simple rescaling argument. Let
X1, -+, Xp € C™ be the p columns of X and define

Zi=xpm, i=1,--p. (48)
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Note that the 2;’s are identically (but not independently) dis-
tributed as z; ~ CN(0,1), which follows from the fact that

7 vibeN (0,1) and the columns of X have unit £2-norms.
The rest of the proof is pretty elementary and follows from the
facts that

Pr (XMl > ) € pPr (Re(e1) P + [Im(z1) P 2 €2)

@ opp <|R( )|>_6)
, e(z
(2 4p exp(—€?/2)

V2w €

Here, (a) follows by taking a union bound over the event
U;{lzi] > €}, (b) follows from taking a union bound over

the event {|Re(z1)| > ¢/v2} U {[Im(z1)| > ¢/+/2} and not-
ing that the real and imaginary parts of z;’s are identically dis-
tributed as A(0, 1), and (c) mainly follows by upper bounding
the complementary cumulative distribution function as Q(¢) <

\/21_7(6 exp(w%ez) [55]. 0

(49)
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