• 제목/요약/키워드: solve the problem

검색결과 11,891건 처리시간 0.04초

AN EFFICIENT ALGORITHM TO SOLVE CONNECTIVITY PROBLEM ON TRAPEZOID GRAPHS

  • Ghosh, Prabir K.;Pal, Madhumangal
    • Journal of applied mathematics & informatics
    • /
    • 제24권1_2호
    • /
    • pp.141-154
    • /
    • 2007
  • The connectivity problem is a fundamental problem in graph theory. The best known algorithm to solve the connectivity problem on general graphs with n vertices and m edges takes $O(K(G)mn^{1.5})$ time, where K(G) is the vertex connectivity of G. In this paper, an efficient algorithm is designed to solve vertex connectivity problem, which takes $O(n^2)$ time and O(n) space for a trapezoid graph.

QFD와 TRIZ의 통합에 의한 설계 단계에서의 창의적 문제 해결 방안 (Integration of QFD and TRIZ to Solve the Inventive Problem in the Design Process)

  • 정해성
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권3호
    • /
    • pp.153-163
    • /
    • 2013
  • QFD(Quality Function Deployment) is a very important tool to improve market share by reducing the gap between the voice of customer and the product's performance. But QFD is not a problem solving tool, although it is very useful in identifying what has to be solved or improved in order to meet the customer's desires. TRIZ has proved to be a very strong tool to solve the difficult problems that requires inventive thinking. QFD integrated with TRIZ becomes hot research recently. But merely linking between HOQ(House of Quality) in QFD and the contradiction matrix in TRIZ can not provide designers with a concrete method to solve the technical problem in the design process. Practically, the contradiction matrix and 40 inventive principles are not helpful for solving the technical problem. To solve the technical problem using TRIZ, a search for the tool and the object involved in the problem is made, from which the wanted result should be derived. A practical method to integrate QFD and TRIZ is proposed in this paper.

Butterfly Chatbot: Finding a Concrete Solution Strategy to Solve Contradiction Problems

  • Hyun, Jung Suk;Park, Chan Jung
    • 한국정보기술학회 영문논문지
    • /
    • 제9권1호
    • /
    • pp.77-87
    • /
    • 2019
  • The Butterfly model, which aims to solve contradiction problems, defines the type of contradiction for given problems and finds the problem-solving objectives and their strategies. Unlike the ARIZ algorithm in TRIZ, the Butterfly model is based on logical proposition, which helps to reduce trial and errors and quickly narrows the problem space for solutions. However, it is hard for problem solvers to define the right propositional relations in the previous Butterfly algorithm. In this research, we propose a contradiction solving algorithm which determines the right problem-solving strategy just with yes or no simple questions. Also, we implement the Butterfly Chatbot based on the proposed algorithm that provides visual and auditory information at the same time and help people solve the contradiction problems. The Butterfly Chatbot can solve contradictions effectively in a short period of time by eliminating arbitrary alternative choices and reducing the problem space.

유사 문제 해결에서 구조적 유사성의 인식 (Insight into an Structural Similarity in Stage of Similar Mathematical Problem Solving Process)

  • 전영배;노은환;강정기
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제50권1호
    • /
    • pp.1-12
    • /
    • 2011
  • It is the aim of this paper to study the target problem solving process in reference to the base problem. We observed closely how students solve the target problem in reference to the base problem. The students couldn't solve the target problem, although they succeed to find the base problem. This comes from failing to discover the structural similarity between the target problem and the base problem. Especially it is important to cognize the proper corresponding of primary components between the base problem and target problem. And there is sometimes a part component of the target problem equivalent to the base problem and the target problem can't be solved without the insight into this fact. Consequently, finding the base problem fail to reach solving the target problem without the insight into their structural similarity. We have to make efforts to have an insight into the structural similarity between the target problem and the base problem to solve the target problem.

일간승무계획문제의 정수계획해법 (An Integer Programming Approach to the Problem of Daily Crew Scheduling)

  • 변종익;이경식;박성수
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2000년도 춘계공동학술대회 논문집
    • /
    • pp.613-616
    • /
    • 2000
  • This paper considers the problem of subway crew scheduling. Crew scheduling is concerned with finding a minimum number of assignments of crews to a given timetable satisfying various restrictions. Traditionally, crew scheduling problem has been formulated as a set covering or set partitioning problem possessing exponentially many variables, but even the LP relaxation of the problem is hard to solve due to the exponential number of variables. In this paper, we propose two basic techniques that solve the problem in a reasonable time, though the optimality of the solution is not guaranteed. To reduce the number of variables, we adopt column-generation technique. We could develop an algorithm that solves column-generation problem in polynomial time. In addition, the integrality of the solution is accomplished by variable-fixing technique. Computational results show column-generation makes the problem of treatable size, and variable fixing enables us to solve LP relaxation in shorter time without a considerable increase in the optimal value. Finally, we were able to obtain an integer optimal solution of a real instance within a reasonable time.

  • PDF

Accelerated Tseng's Technique to Solve Cayley Inclusion Problem in Hilbert Spaces

  • Shamshad, Husain;Uqba, Rafat
    • Kyungpook Mathematical Journal
    • /
    • 제62권4호
    • /
    • pp.673-687
    • /
    • 2022
  • In this study, we solve the Cayley inclusion problem and the fixed point problem in real Hilbert space using Tseng's technique with inertial extrapolation in order to obtain more efficient results. We provide a strong convergence theorem to approximate a common solution to the Cayley inclusion problem and the fixed point problem under some appropriate assumptions. Finally, we present a numerical example that satisfies the problem and shows the computational performance of our suggested technique.

비동기적 분산 시스템하에서 선출 문제 해결을 위한 최소 필요 조건 (The Minimum Requirements for Solving Election Problem in Asynchronous Distributed Systems)

  • 박성훈
    • 한국정보처리학회논문지
    • /
    • 제7권12호
    • /
    • pp.3815-3820
    • /
    • 2000
  • 본 논문에서는 비동기적 분산 시스템에서 산출(Election) 문제를 해결하는데 필요한 최소한의 조건에 대해 논하고자 한다. 이 논문의 핵심은 비동기적 분산 시스템에서 산출 문제를 해결하는데 가장 약한 고장 추적장치는 무엇인가를 찾아내는 데 있다. 먼저 비동기적 분산 시스템에서 산출 문제와 합의(Consensus)문제에 대한 관련성을 토의하고 선출 문제는 합의 문제보다 더욱 어려운 문제임을 보인다. 보다 엄밀하게 표현하자면, 선출 문제를 해결하는데 필요한 가장 약한 고장 추적 장치는 완전한 고장 추적 장치이어야 하는 것으로, 이는 합의 문제를 해결하는데 필요한 가장 약한 고장 추적 장치보다 확실히 강한 것이다.

  • PDF

High School Students' Problem Solving Approaches on the Concept of Stoichiometry

  • Park, Hyun-Ju
    • 한국과학교육학회지
    • /
    • 제25권1호
    • /
    • pp.1-15
    • /
    • 2005
  • This study examined two students' problem solving approaches: the similarities and the differences in their problem solving approaches, and the general problem solving strategies (heuristics) the students employed were discussed. The two students represent differences not only in terms of grades earned, but also in terms of participation, motivation, attention to detail, and approaches to answering questions and problem solving. Three separate problems were selected for this study: A stoichiometry problem; a fruit salad problem; and a limiting reactant problem. Each student was asked individually on three separate occasions to contribute to this study. There are more similarities in the students' problem solving strategies than there are differences. Both students were able to correctly solve the stoichiometry and the fruit salad problems, and were unable to correctly solve the limiting reactant problem. They recognized that an algorithm could be used for both chemistry problems(a stoichiometry problem & a limiting reactant problem). Both students were unable to correctly solve the limiting reactant problem and to demonstrate a clear understanding of the Law of Conservation of Mass. Nor did they show an ability to apply it in solving the problem. However, there was a difference in each one's ability to extend what had been learned/practiced/quizzed in class, to a related but different problem situation.

이차곡선의 작도 활동에서 나타난 유추적 사고 (Analogical Reasoning in Construction of Quadratic Curves)

  • 허남구
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제27권1호
    • /
    • pp.51-67
    • /
    • 2017
  • 유추는 학생들의 문제 해결력, 귀납적 추론, 수학적 발견술, 창의성 신장에 도움을 줄 수 있는 수학 교육적으로 유용한 사고 방법이다. 학생들은 서로 다른 수학적 대상에 대해 유사성을 바탕으로 연결함으로써 두 대상 사이의 관계를 인식할 수 있다. 본 연구에서는 예비수학교사들이 이심률의 정의에 따른 이차곡선의 작도 과정에서 드러난 사고의 특징을 유추의 관점에서 분석하였다. 그 결과, 바탕 문제에 관한 수학적 지식의 부재와 바탕 문제의 수학적 지식에 대응하는 목표 문제의 수학적 지식의 부재는 목표 문제의 해결에 도움되지 못하였다. 바탕 문제의 다양한 해결 방법은 목표 문제의 해결에 도움을 주었으며, 일부는 작도 문제의 해결에 있어 적절한 바탕 문제를 설정하고 대수적 방법을 통해 문제를 해결하였다. 마지막으로 잠재적 유사성에 근거한 유추는 새로운 풀이 방법을 발견하는데 도움을 주었다.

어머니의 정서표현력, 양육효능감, 언어통제유형과 유아의 또래상호작용 및 대인문제해결력과의 관계 (The relation between mother's emotional expressiveness, parenting self-efficacy, verbal control style and child's peer interaction, ability to solve interpersonal problem)

  • 김현지;전경아
    • 한국보육지원학회지
    • /
    • 제7권4호
    • /
    • pp.273-299
    • /
    • 2011
  • 본 연구의 목적은 어머니의 정서표현력, 양육효능감, 언어통제유형과 유아의 또래상호작용, 대인문제해결력의 관계를 파악하여 유아의 또래상호작용 및 대인문제해결력 증진을 위한 어머니의 실제적인 양육방식에 관한 정보를 제공해 줄 수 있는 자료를 마련하고자 한다. 연구대상은 전라북도 J시에 소재한 어린이집 5곳의 만 4~5세 유아 212명이며, 이들을 담당하고 있는 교사를 대상으로 질문지를 실시하였고, 유아들에게 직접 면접을 실시하였다. 본 연구의 결과는 다음과 같다. 어머니의 긍정적 정서표현과 긍정적 또래상호작용 및 대인문제해결력, 부정적 정서표현과 부정적 또래상호작용 및 대인문제해결력, 양육효능감과 긍정적 또래상호작용, 명령적 통제와 부정적 또래상호작용 및 대인문제해결력, 지위적 통제와 부정적 또래상호작용 및 대인문제해결력, 인성적 통제와 긍정적 또래상호작용 및 대인문제해결력과 통계적으로 유의한 정적상관이 있는 것으로 나타났다. 양육효능감과 부정적 또래상호작용, 명령적 통제와 긍정적 또래상호작용은 통계적으로 유의한 부적상관이 있는 것으로 나타났다.