DOI QR코드

DOI QR Code

Accelerated Tseng's Technique to Solve Cayley Inclusion Problem in Hilbert Spaces

  • Shamshad, Husain (Department of Applied Mathematics, Aligarh Muslim University) ;
  • Uqba, Rafat (Department of Applied Mathematics, Aligarh Muslim University)
  • Received : 2021.12.02
  • Accepted : 2022.04.08
  • Published : 2022.12.31

Abstract

In this study, we solve the Cayley inclusion problem and the fixed point problem in real Hilbert space using Tseng's technique with inertial extrapolation in order to obtain more efficient results. We provide a strong convergence theorem to approximate a common solution to the Cayley inclusion problem and the fixed point problem under some appropriate assumptions. Finally, we present a numerical example that satisfies the problem and shows the computational performance of our suggested technique.

Keywords

References

  1. P. Cholamjiak and S. Suantai, Viscosity approximation methods for a nonexpansive semigroup in Banach spaces with gauge functions, J. Glob. Optim., 54(1)(2012), 185-197. https://doi.org/10.1007/s10898-011-9756-4
  2. A. H. Dar, M. K. Ahmad, J. Iqbal and W. A. Mir, Algorithm of Common Solutions to the Cayley Inclusion and Fixed Point Problems, Kyungpook Math. J., 61(2)(2021), 257-267.
  3. A. Gibali and D. V. Thong, Tseng type methods for solving inclusion problems and its applications, Calcolo, 55(2018), 1-22. https://doi.org/10.1007/s10092-018-0244-9
  4. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, UK(1990).
  5. D. Kitkuan, P. Kumam, J. Martnez-Moreno and K. Sitthithakerngkiet, Inertial viscosity forwardbackward splitting algorithm for monotone inclusions and its application to image restoration problems, Int. J. Comput. Math., 97(1-2)(2020), 482-497. https://doi.org/10.1080/00207160.2019.1649661
  6. P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal., 16(1979), 964-979. https://doi.org/10.1137/0716071
  7. D. A. Lorenz and T. Pock, An inertial forward-backward algorithm for monotone inclusions, J. Math. Imaging Vis., 51(2015), 311-325. https://doi.org/10.1007/s10851-014-0523-2
  8. P. E. Maing, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16(2008), 899-912. https://doi.org/10.1007/s11228-008-0102-z
  9. B. Martinet, Rgularisation dinquations variationnelles par approximations successives, Rev. Franaise Informat. Recherche Oprationnelle, 4(1970), 154-158.
  10. O. Nevanlinna and S. Reich, Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces, Israel J. Math., 32(1979), 44-58. https://doi.org/10.1007/BF02761184
  11. B. T. Polyak, Some methods of speeding up the convergence of iteration methods, Ussr Comput. Math. Math. Phys., 4(1964), 1-17. https://doi.org/10.1016/0041-5553(64)90137-5
  12. S. Reich, Extension problems for accretive sets in Banach spaces, J. Functional Analysis, 26(4)(1977), 378-395. https://doi.org/10.1016/0022-1236(77)90022-2
  13. R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim, 14(5)(1976), 877-898. https://doi.org/10.1137/0314056
  14. D. V. Thong and P. Cholamjiak, Strong convergence of a forwardbackward splitting method with a new step size for solving monotone inclusions, Comput. Appl. Math., 38(2)(2019), 1-16. https://doi.org/10.1007/s40314-019-0767-y
  15. P. Tseng, A modified forward-backward splitting method for maximal monotone mapping, SIAM J. Control Optim, 38(2)(2000), 431-446. https://doi.org/10.1137/S0363012998338806
  16. H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc.(2), 66(1)(2002), 240-256. https://doi.org/10.1112/S0024610702003332
  17. J. Yang and H. Liu, Strong convergence result for solving monotone variational inequalities in Hilbert space, Numer. Algorithms, 80(3)(2019), 741-752. https://doi.org/10.1007/s11075-018-0504-4