• Title/Summary/Keyword: solid-state culture

Search Result 80, Processing Time 0.032 seconds

Optimization of Tannase Production by Aspergillus niger in Solid-State Packed-Bed Bioreactor

  • Rodriguez-Duran, Luis V.;Contreras-Esquivel, Juan C.;Rodriguez, Raul;Prado-Barragan, L. Arely;Aguilar, Cristobal N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.960-967
    • /
    • 2011
  • Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett-Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature ($30^{\circ}C$), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors.

Production of an Acidic Polygalacturonase from Aspergillus kawachii by Solid State Fermentation and Their Application for Pectin Extraction

  • Martinez-Avila, Guillermo Cristian Guadalupe;Wicker, Louise;Aguilar, Cristobal Noe;Rodriguez-Herrera, Raul;Contreras-Esquivel, Juan Carlos
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.732-738
    • /
    • 2009
  • An acidic polygalacturonase (PG) from Aspergillus kawachii was produced by solid state fermentation employing a polyurethane foam support. The conditions used for the production of acidic PG were particle size of support (0.6 or 500 $mm^3$) and fermentation time. From the factors studied, the particle size had important influence on enzyme production. The best conditions for acidic PG production were $0.6\;mm^3$ particle size, 18 hr at $30^{\circ}C$ and initial pH of 5.0. In addition, pectin was extracted from citrus pomaces (grapefruit, lime, and tangerine) by acidic PG at $50^{\circ}C$ for 24 hr with citric acid solution. Infrared spectroscopy showed that lime pomace had more high-methoxylated (65%) endogenous pectin than was obtained than from grapefruit or tangerine pomaces. The enzymatically extracted pectin yield in dry basis (d.b.) for grapefruit and lime pectins were 6.95 and 4.25%, respectively. The citric acid solution alone also contributed to pectin extraction from citrus pomaces (7-9%, d.b.). Limited pectin extraction by acidic PG from tangerine pomace was most likely due to the presence of low-methoxylated endogenous pectin. The enzymatic method for pectin extraction using acidic PG from A. kawachii is a promising technique for releasing highly polymerized pectic substances from high-methoxylated lime or grapefruit pomaces.

CYTOTOXIC EFFECT OF RETROGRADE FILLING MATERIALS INCLUDING GLASS IONMER CEMENT ACCORDING TO CELL LINES AND ASSAY METHODS (광중합형 glass ionomer cement를 포함한 수종 역충전재의 세포주와 검사법에 따른 독성 효과)

  • Im, Mi-Kyung;Koo, Dae-Hoi
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.403-424
    • /
    • 1996
  • Cell culture methods have been used to assess the cytotoxicity of dental materials. Different paramaters are used to monitor cytotoxic effects. But it is difficult to compare each investigator's results with different methods. The objective of this study was to investigate cytotoxic effect of several retrograde filling materials according to cell lines and assay methods. Cytotoxicity of Bestalloy (Dogmyung, Korea), Prisma APH(Densply International Inc., U.S.A.), Clearfil FII (Kuraray Co., Japan), Fuji II (GC Co., Japan), Fuji II LC (GC Co., Japan) and IRM (Densply Co., U.S.A.) on L929, 3T3 and KB permanent cell lines was measured. Radiochromium, Lactate dehydrogenase (LDH) release method and colorimetric assays, namely neutral red (NR) and MTT were used. Each material was mixed according to the manufacturer's instruction. They were tested as solid and extracted state. Cell culture media were added to each mixed or solid materials then the solution was collected and used as extract solutions. Solid Fuji II showed mild cytotoxicity on three cell lines using radiochromium release method. There was no difference in cytotoxicity of extract solution group using radiochromium release method. In colorimetric assay immediate Fuji II group and all the IRM groups showed severe cytotoxic effect. Difference in cyctotoxicity was due to rather kinds of cell lines than assay methods. Solid Fuji II and IRM showed mild cytotoxicity on three cell lines. But extract solutions had different cytotoxic effect according to cell lines using LDH release assay. Light-cured glass ionomer had mild to moderate degree of cytotoxicity on three cell lines. Cytotoxicity was affected by specimen prepaton. Susceptibility of each cell ines were also affected by assay emthods. It was suggested that cytotoxicity study using only one cell line and/or assay method might not accurately reflect the real toxic nature of dental biomaterials.

  • PDF

Culture and Regeneration of Populus alba × glandulosa Leaf Protoplasts Isolated from in vitro Cultured Explant (현사시나무 기내배양(器內培養) 엽육조직(葉肉組織)에서 분리(分離)된 원형질체(原形質体) 배양(培養) 및 식물체(植物体) 재분화(再分化))

  • Park, Young Goo;Son, Sung Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.2
    • /
    • pp.208-215
    • /
    • 1988
  • The leaf mesophyll protoplasts of Populus alba ${\times}$ glandulosa were isolated from leaf of plantlet in vitro and cultured for plant regeneration. The MS medium (minus $NH_4NO_3$) with 0.5 mg/l BAP and 2.0 mg/l 2, 4-D showed the moderate frequency of dividing protoplasts cultured by the liquid plating method during the first week of culture. The percentage of colony formation was revealed the highest frequency by the gauze contained semi-solid agar plating method after 5 weeks cultured. Ridding out the gauze, the micro-callus was formed on the same semi-solid medium in 8 weeks after protoplasts culture. For proliferation of callus, mini-callus was transferred on the MS solid medium with 0.5 mg/l 2, 4-D and 0.1 mg/l BAP 12 weeks after culture. Shoot regeneration occurred when the calli derived from protoplasts were cultured on MS medium with 1.0 mg/l zeatin and such shoots could be readily rooted on the one half strengthen MS medium with non-phytohormone. Rooting shoots were planted in green-house 22 weeks after protoplast culture.

  • PDF

Establishment of an Efficient Agrobacterium Transformation System for Eggplant and Study of a Potential Biotechnologically Useful Promoter

  • Claudiu Magioli;Ana Paula Machado da Rocha;Pinheiro, Marcia-Margis;Martins, Gilberto-Sachetto;Elisabeth Mansur
    • Journal of Plant Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • An efficient and reliable Agrobacterium transformation procedure based on TDZ (thidiazuron)-induced organogenesis was established and applied to six Brazilian eggp1ant varieties. Optimum transgenic plants recovery was achieved upon the study of the following parameters affecting transformation efficiency, using F-100 variety as a model: i) explant source; ii) pre-culture period; iii) physical state of the pre-culture medium and iv) coculture conditions. The highest frequency of kanamycin-resistant calli derived from leaf explants (5%) was obtained without a pre-culture period and co-cultivation for 24 h in liquid medium followed by five days on solid RM (regeneration medium). For cotyledon explants, best results were achieved upon a pre-culture of 24 h in liquid RM and a co-cultivation period of 24 h in liquid RM followed by three days in solid RM, resulting in a transformation Sequency of 22.7%. Kanamycin-resistant organogenic calli were also obtained from cultivars Emb, Preta Comprida, Round nose Shaded, Campineira and Florida Market. The expression pattern of an epidermis-specific promoter was studied using transformants expressing a chimaeric construct comprised by the promoter Atgrp-5 transcriptionally fused to the coding region of the gus gene. The expression pattern was similar to that previously observed in tobacco and Arabidopsis thaliana, with preferential expression at the epidermis and the stem phloem. These results support the idea that the Atgrp-5 promoter can be used to drive defense genes in these tissues, which are sites of pathogen interaction and spread, in programs for the genetic improvement of eggplant.

  • PDF

Effects of Prefermentation and Extrusion Cooking on the Lactic Fermentation of Rice-Soybean Based Beverage (예비발효 및 압출조리 전처리가 쌀-대두분 혼합액의 유산균 발효에 미치는 영향)

  • Lee, Cherl-Ho;Souane, Moussa;Rhu, Ki-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.666-673
    • /
    • 1988
  • The enhancement of the growth of lactic bateria in rice-based beverage was achieved by the prefermentation of cereals with a mixed culture of Bacillus and yeast followed by extrusion cooking. The rice-soybean milk blend was inoculated with a mixed culture of Bacillus laevolactis and Saccaromyces cerevisiae, and fermented in solid state at $45^{\circ}C$. It was extruded in an autogenous single screw extruder for sterilization as well as for partial digestion, and subjected to lactic fermentation in liquid state. The combined prefermentation and extrusion cooking increased the content of water soluble solid. It stimulated the growth of lactic bacteria as well as the acid production and increased dispersion stability and sensory acceptability.

  • PDF

Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation (농부산물을 이용한 고체발효에서 발효조건이 목질계 분해 효소 생산에 미치는 영향)

  • Kim, Jin-Woo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.3
    • /
    • pp.302-306
    • /
    • 2014
  • The present study was carried out to optimize fermentation parameters for the production of cellulolytic enzymes through solid substrate fermentation of Trichoderma reesei and Aspergillus niger grown on wheat straw. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation parameters including temperature, pH, moisture content and particle size. The results of optimization indicated that $40^{\circ}C$, pH 7, moisture content 75% and particle size between 0.25~0.5 mm were found to be the optimum condition at 96 hr fermentation. Under the optimal condition, co-culture of T. reesei and A. niger produced cellulase activities of 10.3 IU, endoglucanase activity of 100.3 IU, ${\beta}$-glucosidase activity of 22.9 IU and xylanase activity of 2261.7 IU/g dry material were obtained. Cellulolytic enzyme production with optimization showed about 72.6, 48.8, 55.2 and 51.9% increase compared to those obtained from control experiment, respectively.

Study of the Production of Alkaline Keratinases in Submerged Cultures as an Alternative for Solid Waste Treatment Generated in Leather Technology

  • Cavello, Ivana A.;Chesini, Mariana;Hours, Roque A.;Cavalitto, Sebastian F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.1004-1014
    • /
    • 2013
  • Six nonpathogenic fungal strains isolated from alkaline soils of Buenos Aires Province, Argentina (Acremonium murorum, Aspergillus sidowii, Cladosporium cladosporoides, Neurospora tetrasperma, Purpureocillium lilacinum (formerly Paecilomyces lilacinus), and Westerdikella dispersa) were tested for their ability to produce keratinolytic enzymes. Strains were grown on feather meal agar as well as in solid-state and submerged cultures, using a basal mineral medium and "hair waste" as sole sources of carbon and nitrogen. All the tested fungi grew on feather meal agar, but only three of them were capable of hydrolyzing keratin, producing clear zones. Among these strains, P. lilacinum produced the highest proteolytic and keratinolytic activities, both in solid-state and submerged fermentations. The medium composition and culture conditions for the keratinases production by P. lilacinum were optimized. Addition of glucose (5 g/l) and yeast extract (2.23 g/l) to the basal hair medium increased keratinases production. The optimum temperature and initial pH for the enzyme production were $28^{\circ}C$ and 6.0, respectively. A beneficial effect was observed when the original concentration of four metal ions, present in the basal mineral medium, was reduced up to 1:10. The maximum yield of the enzyme was 15.96 $U_c/ml$ in the optimal hair medium; this value was about 6.5-fold higher than the yield in the basal hair medium. These results suggest that keratinases from P. lilacinum can be useful for biotechnological purposes such as biodegradation (or bioconversion) of hair waste, leading to a reduction of the environmental pollution caused by leather technology with the concomitant production of proteolytic enzymes and protein hydrolyzates.

A Study on the Konjak Mannan-hydrolyzing Enzymes from Aspergillus awamori (Aspergillus awamori 가 생산하는 konjak mannan 분해효소에 관한 연구)

  • Chang, Kyung-Jung;Lee, Su-Rae
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.199-206
    • /
    • 1972
  • As a study on the konjak mannan-hydrolyzing enzymes from Aspergillus awamori, the culture conditions for enzyme formation, purification and properties of the enzymes and the effect of gamma-irradiation on the enzymatic hydrolysis were investigated. The results are summarized as follows: 1) A strain of A. awamori was selected as having the highest productivity of mannanase among 81 species of molds. 2) The optimum conditions for solid culture on wheat bran were 3 days of culture period, pH 4 of spraying water and 100% addition of tap water. 3) The optimum conditions for shaking culture were 6 days of culture period, addition of 0.1% xylose plus 0.5% konjak mannan and of 0.04% peptone. 4) Konjak mannan-hydrolyzing enzymes were separated into fraction I and fraction II by ammonium sulfate fractionation and DEAE-Sephadex column chromatography. 5) Fractions I and II showed pH optima of 4, pH stability of $3.5{\sim}5$ and $3{\sim}6$ and the extent of hydrolyzing konjak mannan 9% and 50%, respectively. 6) Hydrolysis of konjak mannan by a crude enzyme preparation was partially accerelated by gamma-irradiation of substrate above 0.5 Mrad and the effect was more remarkable by irradiating in wet state than in dry state. 7) Gamma-irradiation of konjak mannan brought about the increase in reducing power and decrease in viscosity and the effect was more remarkable in wet state than in dry state.

  • PDF

Optimization of Solid-State Fermentation Condition Using Distiller's Dried Grain (주정박을 이용한 고체발효 조건의 최적화)

  • Choi, Gi-Wook;Moon, Se-Kwon;Kim, Yule;Jang, Byung-Wook;Kim, Young-Ran;Chung, Bong-Woo
    • KSBB Journal
    • /
    • v.23 no.4
    • /
    • pp.345-349
    • /
    • 2008
  • To enhance the value as a feedstuff of distiller's dried grain (DDG) and develop fermented feedstuff, we investigated the effects of the culture conditions affecting glucoamylase activity, such as pH in submerged culture and moisture content in solid-state culture. Also, we investigated the optimal mixing ratio of DDG and wheat bran for the production of fermented feedstuff containing high content of amino acids. In culture conditions for high fermented activity, pH and moisture were optimum at pH 4 and 60%, respectively. In the case of mixing ratio, the glucoamylase activity was decreased with increase of DDG content. On the other hand, the content of crude protein was increased slowly. For the development of fermented feedstuff, the optimal mixing ratio of DDG and wheat bran was 1 to 4. Finally, we could produce approximately 1 ton (dry matter) of trial product in incubator of pilot-scale. The glucoamylase activity and the crude protein content were 1,024 U/g and 33.6%, respectively.