DOI QR코드

DOI QR Code

Effects of Fermentation Parameters on Cellulolytic Enzyme Production under Solid Substrate Fermentation

농부산물을 이용한 고체발효에서 발효조건이 목질계 분해 효소 생산에 미치는 영향

  • Kim, Jin-Woo (Department of Biosystems Engineering, McGill University)
  • 김진우 (맥길대학교 바이오시스템공학과)
  • Received : 2014.02.24
  • Accepted : 2014.03.19
  • Published : 2014.06.01

Abstract

The present study was carried out to optimize fermentation parameters for the production of cellulolytic enzymes through solid substrate fermentation of Trichoderma reesei and Aspergillus niger grown on wheat straw. A sequential optimization based on one-factor-at-a-time method was applied to optimize fermentation parameters including temperature, pH, moisture content and particle size. The results of optimization indicated that $40^{\circ}C$, pH 7, moisture content 75% and particle size between 0.25~0.5 mm were found to be the optimum condition at 96 hr fermentation. Under the optimal condition, co-culture of T. reesei and A. niger produced cellulase activities of 10.3 IU, endoglucanase activity of 100.3 IU, ${\beta}$-glucosidase activity of 22.9 IU and xylanase activity of 2261.7 IU/g dry material were obtained. Cellulolytic enzyme production with optimization showed about 72.6, 48.8, 55.2 and 51.9% increase compared to those obtained from control experiment, respectively.

목질계 분해효소 활성 증대를 위해 밀짚을 이용한 고체발효에서 주요 발효인자의 최적화를 수행하였다. Trichoderma reesei와 Aspergillus niger를 이용한 혼합배양에서 고체발효에 주요한 영향을 미친다고 알려진 배양온도, pH, 수분함량과 고체기질 크기를 순차적 최적화를 진행하였다. 실험에 적용 된 인자 모두 목질계 분해효소 활성에 유의한 효과를 주었으며, 발효온도 $40^{\circ}C$, pH 7, 수분함량 75%와 고체기질 크기 0.25~0.5 mm가 목질계 분해효소 생산을 위한 최적 조건임을 알 수 있었다. 최적조건 하에서 밀짚을 이용한 고체발효를 수행하였을 때, 효소활성 기준 cellulase 10.3 IU, endoglucanase 100.3 IU, ${\beta}$-glucosidase 22.9 IU와 xylanase 2261.7 IU/g dry material을 배양 96시간에 확인할 수 있었다. 본 결과는 기존 효소활성 대비 각각 72.6, 48.7, 55.2와 51.9% 증가한 수치로 혼합배양과 순차적 최적화를 적용하여 효과적인 목질계 분해효소 활성 증대가 가능함을 확인하였다.

Keywords

References

  1. Limayema, A. and Rickea, S. C., "Lignocellulosic Biomass for Bioethanol Production: Current Perspectives, Potential Issues and Future Prospects," Prog. Energ. Combust, 38(4), 449-467(2012). https://doi.org/10.1016/j.pecs.2012.03.002
  2. Sarkar, N., Ghosh, S. K., Bannerjee, S. and Aikat, K., "Bioethanol Production from Agricultural Wastes: An Overview," Renew. Energ., 37(1), 19-27(2012). https://doi.org/10.1016/j.renene.2011.06.045
  3. Dhillon, G. S., Brar, S. K., Kaur, S. and Verma. M., "Bioproduction and Extraction Optimization of Citric Acid from Aspergillus niger by Rotating Drum Type Solid-state Bioreactor," Ind. Crop Prod., 41, 78-84(2013). https://doi.org/10.1016/j.indcrop.2012.04.001
  4. Kim, S. B., Lee, J. H., Oh, K. K., Lee, S. J., Lee, J. Y., Kim, J. S. and Kim, S. W., "Dilute Acid Pretreatment of Barley Straw and Its Saccharification and Fermentation," Biotechnol. Bioproc. Eng., 16(4), 725-732(2011). https://doi.org/10.1007/s12257-010-0305-7
  5. Go, A. R., Ko, J. W., Lee, S. J., Kim, S. W., Han, S. O., Lee, J. W., Woo, H. M., Um, Y. S., Nam, J. W. and Park, C. H. "Process Design and Evaluation of Value-added Chemicals Production from Biomass," Biotechnol. Bioproc. Eng., 17(5), 1055-1061(2012). https://doi.org/10.1007/s12257-012-0257-1
  6. Kim, T. H., Kim, J. S., Sunwoo, C. S. and Lee, Y. Y., "Pretreatment of Corn Stover by Aqueous Ammonia," Bioresour. Technol., 90(1), 39-47(2003). https://doi.org/10.1016/S0960-8524(03)00097-X
  7. Kim, K. S. and Kim, J. S., "Optimization of Ammonia Percolation Process for Ethanol Production from Miscanthus Sinensis," Korean Chem. Eng. Res., 48(6), 704-711(2010).
  8. Singhania, R. R., Shkumaran, R. K., Patel, A. K., Larroche, C. and Pandey, A., "Advancement and Comparative Profiles in the Production Technologies Using Solid-state and Submerged Fermentation for Microbial Cellulases," Enzyme Microb. Technol., 46(7), 541-549(2010). https://doi.org/10.1016/j.enzmictec.2010.03.010
  9. Dhillon, G. S., Bra, S. K. and Surinder, K., "Potential of Apple Pomace as a Solid Substrate for Fungal Cellulase and Hemicellulase Bioproduction Through Solid-state Fermentation," Ind. Crop Prod., 38, 6-13(2012). https://doi.org/10.1016/j.indcrop.2011.12.036
  10. Barrington, S. and Kim, J. W., "Response Surface Optimization of Medium Components for Citric Acid Production by Aspergillus niger NRRL 567 Grown in Peat Moss," Bioresour. Technol., 99(2), 368-377(2008). https://doi.org/10.1016/j.biortech.2006.12.007
  11. Kim, J. W. and Barrington, S., "Response Surface Optimization of Medium Components for Citric Acid Production by Aspergillus niger NRRL 567 Grown in Peat Moss," Bioresour. Technol., 99(2), 368-377(2008). https://doi.org/10.1016/j.biortech.2006.12.007
  12. Pensupa, N., Jin, M., Kokolski, M., Archer, D. B. and Du, C. A., "A Solid State Fungal Fermentation-based Strategy for the Hydrolysis of Wheat Straw," Bioresour. Technol., 149, 261-267(2013). https://doi.org/10.1016/j.biortech.2013.09.061
  13. Kim, J. W., Barrington, S., Sheppard, J. and Lee, B., "Nutrient Optimization for the Production of Citric Acid by Aspergillus niger NRRL 567 Grown on Peat Moss Enriched with Glucose," Process Biochem., 41(6), 1253-1260(2006). https://doi.org/10.1016/j.procbio.2005.12.021
  14. Rezaei, P., Darzi, G. and Shafaghat, H., "Optimization of the Fermentation Conditions and Partial Characterization for Acidothermophilic ${\alpha}$-amylase from Aspergillus niger NCIM 548," Korean J. Chem. Eng., 27(3), 919-924(2010). https://doi.org/10.1007/s11814-010-0138-2
  15. NREL. Chemical analysis testing standard procedure nos. 001-004 and 009. 1996; National Renewable Energy Laboratory, Golden, CO.
  16. Rahikainen, J., Mikander, S., Marjama, K., Tamminen, T., Lappas, A., Viikari, L. and Kruus, K., "Inhibition of Enzymatic Hydrolysis by Residual Lignins from Softwood-study of Enzyme Binding and Inactivation on Lignin-rich Surface," Biotechnol. Bioeng., 108(12), 2823-2834(2011). https://doi.org/10.1002/bit.23242
  17. Takashima, S., Iilura, H., Nakamur, A., Hidak, M., Masaki, H. and Uozumi, T., "Overproduction of Recombinant Trichoderma reesei Cellulase by Aspergilus oryzae and Their Enzymatic Properties," J. Biotechnol., 65(2), 163-171(1998). https://doi.org/10.1016/S0168-1656(98)00084-4
  18. Jianlong, W. and Ping, L., "Phytate as a Stimulator of Citric Acid Production by Aspergillus niger," Process Biochem., 33(3), 313-316(1998). https://doi.org/10.1016/S0032-9592(97)87513-9
  19. Lotfy, W. A., Ghanem, K. M. and El-Helow, E. R., "Citric Acid Production by a Novel Aspergillus niger isolate: I. Mutagenesis and Cost Reduction Studies," Bioresour. Technol., 98(18), 3464-3469(2007). https://doi.org/10.1016/j.biortech.2006.11.007
  20. Bansal, N., Tewari, R., Soni, R. and Soni, S. K., "Production of Cellulases from Aspergilluns niger NS-2 in Solid State Fermentation on Agricultural and Kitchen Waste Residues," Waste Manag., 32, 1341-1346(2012). https://doi.org/10.1016/j.wasman.2012.03.006
  21. Kim, J. W., "Response Surface Optimization of Fermentation Parameters for Citric Acid Production in Solid Substrate Fermentation," Korean Chem. Eng. Res., 50(5), 879-884(2012). https://doi.org/10.9713/kcer.2012.50.5.879
  22. Roukas, T., "Citric Acid Production from Carob Pod by Solidstate Fermentation," Enzyme Microb. Technol., 24(1), 54-59(1999). https://doi.org/10.1016/S0141-0229(98)00092-1
  23. Nampoothiri, M. K., Baiju, T. V., Sandhya, C., Sabu, A., Szakacs, G. and Pandey, A., "Process Optimization for Antifungal Chitinase Production by Trichoderma harzianum," Process Biochem., 39(11), 1583-1590(2004). https://doi.org/10.1016/S0032-9592(03)00282-6
  24. Wen, Z. Y. and Chen, F., "Application of Statistically-based Experimental Designs for the Optimization of Eicosapentaenoic Acid Production by the Diatom Nitzschia laevis," Biotechnol. Bioeng., 75(2), 159-169(2001). https://doi.org/10.1002/bit.1175
  25. Ellaiah, P., Srinivasulu, B. and Adinarayana, K., "Optimization Studies on Neomycin Production by a Mutant Strain of Streptomyces marinensis in Solid State Fermentation," Process Biochem., 39(5), 529-534(2004). https://doi.org/10.1016/S0032-9592(02)00059-6

Cited by

  1. Paenibacillus jamilae BRC15-1의 Cellulase 생산 최적화 vol.30, pp.6, 2014, https://doi.org/10.7841/ksbbj.2015.30.6.283