Browse > Article
http://dx.doi.org/10.4014/jmb.1103.03025

Optimization of Tannase Production by Aspergillus niger in Solid-State Packed-Bed Bioreactor  

Rodriguez-Duran, Luis V. (Department of Food Science and Technology, School of Chemistry, Universidad Autonoma de Coahuila)
Contreras-Esquivel, Juan C. (Department of Food Science and Technology, School of Chemistry, Universidad Autonoma de Coahuila)
Rodriguez, Raul (Department of Food Science and Technology, School of Chemistry, Universidad Autonoma de Coahuila)
Prado-Barragan, L. Arely (Department of Biotechnology, Universidad Autonoma Metropolitana Iztapalapa)
Aguilar, Cristobal N. (Department of Food Science and Technology, School of Chemistry, Universidad Autonoma de Coahuila)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.9, 2011 , pp. 960-967 More about this Journal
Abstract
Tannin acyl hydrolase, also known as tannase, is an enzyme with important applications in the food, feed, pharmaceutical, and chemical industries. However, despite a growing interest in the catalytic properties of tannase, its practical use is very limited owing to high production costs. Several studies have already demonstrated the advantages of solid-state fermentation (SSF) for the production of fungal tannase, yet the optimal conditions for enzyme production strongly depend on the microbial strain utilized. Therefore, the aim of this study was to improve the tannase production by a locally isolated A. niger strain in an SSF system. The SSF was carried out in packed-bed bioreactors using polyurethane foam as an inert support impregnated with defined culture media. The process parameters influencing the enzyme production were identified using a Plackett-Burman design, where the substrate concentration, initial pH, and incubation temperature were determined as the most significant. These parameters were then further optimized using a Box-Behnken design. The maximum tannase production was obtained with a high tannic acid concentration (50 g/l), relatively low incubation temperature ($30^{\circ}C$), and unique low initial pH (4.0). The statistical strategy aided in increasing the enzyme activity nearly 1.97-fold, from 4,030 to 7,955 U/l. Consequently, these findings can lead to the development of a fermentation system that is able to produce large amounts of tannase in economical, compact, and scalable reactors.
Keywords
Tannase; solid-state fermentation; packed-bed bioreactor; optimization; Plackett-Burman; response surface methodology;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Lu, M. J. and C. Chen. 2008. Enzymatic modification by tannase increases the antioxidant activity of green tea. Food Res. Int. 41: 130-137.   DOI   ScienceOn
2 Luedeking, R. and E. L. Piret. 1959. A kinetic study of the lactic acid fermentation. Batch process at controlled pH. J. Biochem. Microbiol. Technol. Eng. 1: 393-412.   DOI
3 Manjit, A. Yadav, N. K. Aggarwal, K. Kumar and A. Kumar. 2008. Tannase production by Aspergillus fumigatus MA under solid-state fermentation. World J. Microbiol. Biotechnol. 24: 3023-3030.   DOI   ScienceOn
4 Mata-Gomez, M. A., L. V. Rodriguez, E. L. Ramos, J. Renovato, M. A. Cruz-Hernandez, R. Rodriguez, et al. 2009. A novel tannase from the xerophilic fungus Aspergillus niger GH1. J. Microbiol. Biotechnol. 19: 987-996.   DOI
5 Molin, G. 2008. Lactobacillus plantarum: The role in foods and in human health, pp. 305-342. In E. R. Farnworth (ed.). Handbook of Fermented Functional Foods, 2nd Ed. CRC Press, Boca Raton, USA.
6 Kar, B., R. Banerjee, and B. C. Bhattacharyya. 1999. Microbial production of gallic acid by modified solid state fermentation. J. Ind. Microbiol. Biotechnol. 23: 173-177.   DOI   ScienceOn
7 Khanbabaee, K. and T. van Ree. 2001. Tannins: Classification and definition. Nat. Prod. Rep. 18: 641-649.   DOI   ScienceOn
8 Kumar, R., J. Sharma, and R. Singh. 2007. Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves. Microbiol. Res. 162: 384-390.   DOI   ScienceOn
9 Lekha, P. K. and B. K. Lonsane. 1997. Production and application of tannin acyl hydrolase: State of the art, pp. 215-260. In S. Neidleman and A. Laskin (eds.). Advances in Applied Microbiology, Vol. 44. Academic Press, San Diego, California.
10 Lekha, P. K., N. Chand, and B. K. Lonsane. 1994. Computerized study of interactions among factors and their optimization through response surface methodology for the production of tannin acyl hydrolase by Aspergillus niger PKL 104 under solid state fermentation. Bioprocess Eng. 11: 7-15.   DOI   ScienceOn
11 Cruz-Hernandez, M., J. C. Contreras-Esquivel, F. Lara, R. Rodriguez, and C. N. Aguilar. 2005. Isolation and evaluation of tannin-degrading fungal strains from the mexican desert. Z. Naturforsch. C 60: 844-848.
12 Das Mohapatra, P. K., C. Maity, R. S. Rao, B. R. Pati, and K. C. Mondal. 2009. Tannase production by Bacillus licheniformis KBR6: Optimization of submerged culture conditions by Taguchi DOE methodology. Food Res. Int. 42: 430-435.   DOI   ScienceOn
13 Anwar, Y. A. S., Hasim, and I. M. Artika. 2007. The production of tannin acyl hydrolase from Aspergillus niger. Microbiol. Indones. 1: 91-94.   DOI
14 Dey, G., A. Mitra, R. Banerjee, and B. R. Maiti. 2001. Enhanced production of amylase by optimization of nutritional constituents using response surface methodology. Biochem. Eng. J. 7: 227-231.   DOI   ScienceOn
15 Kar, B. and R. Banerjee. 2000. Biosynthesis of tannin acyl hydrolase from tannin-rich forest residue under different fermentation conditions. J. Ind. Microbiol. Biotechnol. 25: 29-38.   DOI   ScienceOn
16 Anisha, G. S., R. K. Sukumaran, and P. Prema. 2008. Statistical optimization of alpha-galactosidase production in submerged fermentation by Streptomyces griseoloalbus using response surface methodology. Food Technol. Biotechnol. 46: 171-177.
17 Banerjee, D., K. C. Mondal, and B. R. Pati. 2007. Tannase production by Aspergillus aculeatus DBF9 through solid-state fermentation. Acta Microbiol. Immunol. Hung. 54: 159-166.   DOI   ScienceOn
18 Barbehenn, R. V., S. L. Bumgarner, E. F. Roosen, and M. M. Martin. 2001. Antioxidant defenses in caterpillars: Role of the ascorbate-recycling system in the midgut lumen. J. Insect Physiol. 47: 349-357.   DOI   ScienceOn
19 Barthomeuf, C., F. Regerat, and H. Pourrat. 1994. Production, purification and characterization of a tannase from Aspergillus niger LCF 8. J. Ferment. Bioeng. 77: 320-323.   DOI   ScienceOn
20 Battestin, V. and G. A. Macedo. 2007. Tannase production by Paecilomyces variotii. Bioresour. Technol. 98: 1832-1837.   DOI   ScienceOn
21 Belmares, R., J. C. Contreras-Esquivel, R. Rodriguez-Herrera, A. R. Coronel, and C. N. Aguilar. 2004. Microbial production of tannase: An enzyme with potential use in food industry. LWT Food Sci. Technol. 37: 857-864.   DOI   ScienceOn
22 Box, G. E. P. and D. W. Behnken. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2: 455-475.   DOI   ScienceOn
23 Bradoo, S., R. Gupta, and R. K. Saxena. 1997. Parametric optimization and biochemical regulation of extracellular tannase from Aspergillus japonicus. Process Biochem. 32: 135-139.   DOI   ScienceOn
24 Aguilar, C. N. and G. Gutierrez-Sanchez. 2001. Review: Sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci. Technol. Int. 7: 373-382.   DOI
25 Aguilar, C. N., C. Augur, E. Favela-Torres, and G. Viniegra-Gonzalez. 2001. Production of tannase by Aspergillus niger Aa-20 in submerged and solid-state fermentation: Influence of glucose and tannic acid. J. Ind. Microbiol. Biotechnol. 26: 296-302.   DOI   ScienceOn
26 Aguilar, C. N., C. Augur, E. Favela-Torres, and G. Viniegra-Gonzalez. 2001. Induction and repression patterns of fungal tannase in solid-state and submerged cultures. Process Biochem. 36: 565-570.   DOI   ScienceOn
27 Aguilar, C. N., E. Favela-Torres, G. Viniegra-Gonzalez, and C. Augur. 2002. Culture conditions dictate protease and tannase production in submerged and solid-state cultures of Aspergillus niger Aa-20. Appl. Biochem. Biotechnol. 102-103: 407-414.   DOI
28 Aguilar, C. N., R. Rodriguez, G. Gutierrez-Sanchez, C. Augur, E. Favela-Torres, L. A. Prado-Barragan, et al. 2007. Microbial tannases: Advances and perspectives. Appl. Microbiol. Biotechnol. 76: 47-59.   DOI   ScienceOn
29 Ajay-Kumar, R., P. Gunasekaran, and M. Lakshmanan. 1999. Biodegradation of tannic acid by Citrobacter freundii isolated from a tannery effluent. J. Basic Microbiol. 39: 161-168.   DOI   ScienceOn
30 Rodrigues, T. H. S., M. A. A. Dantas, G. A. S. Pinto, and L. R. B. Goncalves. 2007. Tannase production by solid state fermentation of cashew apple bagasse. Appl. Biochem. Biotechnol. 137-140: 675-688.   DOI   ScienceOn
31 Rajendran, A., A. Palanisamy, and V. Thangavelu. 2008. Evaluation of medium components by Plackett-Burman statistical design for lipase production by Candida rugosa and kinetic modeling. Chin. J. Biotechnol. 24: 436-444.   DOI
32 Rodrigues, T. H. S., G. A. S. Pinto, and L. R. B. Goncalves. 2008. Effects of inoculum concentration, temperature, and carbon sources on tannase production during solid state fermentation of cashew apple bagasse. Biotechnol. Bioprocess Eng. 13: 571-576.   DOI
33 Sabu, A., C. Augur, C. Swati, and A. Pandey. 2006. Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation. Process Biochem. 41: 575-580.   DOI   ScienceOn
34 Sabu, A., A. Pandey, M. Jaafar Daud, and G. Szakacs. 2005. Tamarind seed powder and palm kernel cake: Two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour. Technol. 96: 1223-1228.   DOI   ScienceOn
35 Pinto, G. A. S., S. G. F. Leite, S. C. Terzi, and S. Couri. 2001. Selection of tannase-producing Aspergillus niger strains. Braz. J. Microbiol. 32: 24-26.   DOI   ScienceOn
36 Raaman, N., B. Mahendran, C. Jaganathan, S. Sukumar, and V. Chandrasekaran. 2010. Optimisation of extracellular tannase production from Paecilomyces variotii. World J. Microbiol. Biotechnol. 26: 1033-1039.   DOI   ScienceOn
37 Paranthaman, R., R. Vidyalakshmi, S. Murugesh, and K. Singaravadivel. 2010. Manipulation of fermentation conditions on production of tannase from agricultural by-products with Aspergillus oryzae. Afr. J. Microbiol. Res. 4: 1440-1445.
38 Mondal, K. C., D. Banerjee, R. Banerjee, and B. R. Pati. 2001. Production and characterization of tannase from Bacillus cereus KBR9. J. Gen. Appl. Microbiol. 47: 263-267.   DOI   ScienceOn
39 Mukherjee, G. and R. Banerjee. 2004. Biosynthesis of tannase and gallic acid from tannin-rich substrates by Rhizopus oryzae and Aspergillus foetidus. J. Basic Microbiol. 44: 42-48.   DOI   ScienceOn
40 Murugan, K., S. Saravanababu, and M. Arunachalam. 2007. Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF process. Bioresour. Technol. 98: 946-949.   DOI   ScienceOn
41 Pepi, M., L. R. Lampariello, R. Altieri, A. Esposito, G. Perra, M. Renzi, et al. 2010. Tannic acid degradation by bacterial strains Serratia spp. and Pantoea sp. isolated from olive mill waste mixtures. Int. Biodeterior. Biodegradation 64: 73-80.   DOI   ScienceOn
42 Viniegra-Gonzalez, G., E. Favela-Torres, C. Aguilar, S. D. J. Romero-Gomez, G. Diaz-Godinez, and C. Augur. 2003. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 13: 157-167.   DOI   ScienceOn
43 Selwal, M., A. Yadav, K. Selwal, N. Aggarwal, R. Gupta, and S. Gautam. 2010. Optimization of cultural conditions for tannase production by Pseudomonas aeruginosa IIIB 8914 under submerged fermentation. World J. Microbiol. Biotechnol. 26: 599-605.   DOI   ScienceOn
44 Sharma, S., L. Agarwal, and R. Saxena. 2007. Statistical optimization for tannase production from Aspergillus niger under submerged fermentation. Ind. J. Microbiol. 47: 132-138.   DOI   ScienceOn
45 Sharma, S., T. K. Bhat, and R. K. Dawra. 2000. A spectrophotometric method for assay of tannase using rhodanine. Anal. Biochem. 279: 85-89.   DOI   ScienceOn
46 Zhu, Y., J. P. Smits, W. Knol, and J. Bol. 1994. A novel solid-state fermentation system using polyurethane foam as inert carrier. Biotechnol. Lett. 16: 643-648.   DOI   ScienceOn