Browse > Article
http://dx.doi.org/10.4014/jmb.1211.11016

Study of the Production of Alkaline Keratinases in Submerged Cultures as an Alternative for Solid Waste Treatment Generated in Leather Technology  

Cavello, Ivana A. (Research and Development Center for Industrial Fermentations (CINDEFI, UNLP: CCT-La Plata, CONICET))
Chesini, Mariana (Research and Development Center for Industrial Fermentations (CINDEFI, UNLP: CCT-La Plata, CONICET))
Hours, Roque A. (Research and Development Center for Industrial Fermentations (CINDEFI, UNLP: CCT-La Plata, CONICET))
Cavalitto, Sebastian F. (Research and Development Center for Industrial Fermentations (CINDEFI, UNLP: CCT-La Plata, CONICET))
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.7, 2013 , pp. 1004-1014 More about this Journal
Abstract
Six nonpathogenic fungal strains isolated from alkaline soils of Buenos Aires Province, Argentina (Acremonium murorum, Aspergillus sidowii, Cladosporium cladosporoides, Neurospora tetrasperma, Purpureocillium lilacinum (formerly Paecilomyces lilacinus), and Westerdikella dispersa) were tested for their ability to produce keratinolytic enzymes. Strains were grown on feather meal agar as well as in solid-state and submerged cultures, using a basal mineral medium and "hair waste" as sole sources of carbon and nitrogen. All the tested fungi grew on feather meal agar, but only three of them were capable of hydrolyzing keratin, producing clear zones. Among these strains, P. lilacinum produced the highest proteolytic and keratinolytic activities, both in solid-state and submerged fermentations. The medium composition and culture conditions for the keratinases production by P. lilacinum were optimized. Addition of glucose (5 g/l) and yeast extract (2.23 g/l) to the basal hair medium increased keratinases production. The optimum temperature and initial pH for the enzyme production were $28^{\circ}C$ and 6.0, respectively. A beneficial effect was observed when the original concentration of four metal ions, present in the basal mineral medium, was reduced up to 1:10. The maximum yield of the enzyme was 15.96 $U_c/ml$ in the optimal hair medium; this value was about 6.5-fold higher than the yield in the basal hair medium. These results suggest that keratinases from P. lilacinum can be useful for biotechnological purposes such as biodegradation (or bioconversion) of hair waste, leading to a reduction of the environmental pollution caused by leather technology with the concomitant production of proteolytic enzymes and protein hydrolyzates.
Keywords
Keratinases; hair waste; leather technology; Purpureocillium lilacinum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Muhsin TM, Hadi RB. 2001. Degradation of keratin substrates by fungi isolated from sewage sludge. Mycopathologia 154: 185-189.
2 Xie F, Chao Y, Yang X, Yang J, Xue Z, Luo Y, Qian S. 2009. Purification and characterization of four keratinases produced by Streptomyces sp. strain 16 in native human foot skin medium. Bioresour. Technol. 101: 344-350.
3 Moallaei H, Zaini F, Larcher G, Beucher B, Bouchara JP. 2006. Partial purification and characterization of a 37 KDa extracellular proteinase from Trichophyton vanbreuseghemii. Mycopathologia 161: 369-375.   DOI
4 Muga A, Arrondo JL, Bellon T, Sancho J, Bernabeu C. 1993. Structural and functional studies on the interaction of sodium dodecyl sulfate with ${\beta}$-galactosidase. Arch. Biochem. Biophys. 300: 451-457.   DOI   ScienceOn
5 Patil CS, Gangawane AK, Hatti SS. 2010. Production and characterization of alkaline thermostable protease from newly isolated Bacillus sp. J. Plant Genom. 1: 9-17.
6 Rai SK, Konwarh R, Mukherjee AK. 2009. Purification, characterization and biotechnological application of an alkaline b-keratinase produced by Bacillus subtilis RM-01 in solidstate fermentation using chicken-feather as substrate. Biochem. Eng. J. 45: 218-225.   DOI   ScienceOn
7 Riffel A, Brandelli A. 2006. Keratinolytic bacteria isolated from feather waste. Braz. J. Microbiol. 37: 395-399.   DOI
8 Riffel A, Lucas F, Heeb P, Brandelli A. 2003. Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Arch. Microbiol. 179: 258-265.
9 Riffel A, Ortolan S, Brandelli A. 2003. De-hairing activity of extracellular proteases produced by keratinolytic bacteria. J. Chem. Technol. Biotechnol. 78: 855-859.   DOI   ScienceOn
10 Santos RM, Firmino AA, de Sa CM, Felix CR. 1996. Keratinolytic activity of Aspergillus fumigatus Fresenius. Curr. Microbiol. 33: 364-370.   DOI   ScienceOn
11 Saber WIA, El-Metwally MM, El-Hersh MS. 2010. Keratinase production and biodegradation of some keratinous wastes by Alternaria tenuissima and Aspergillus nidulans. Res. J. Microbiol. 5: 21-35.   DOI
12 Sangali S, Brandelli A. 2000. Feather keratin hydrolysis by Vibrio sp. strain kr2. J. Appl. Microbiol. 89: 735-743.   DOI   ScienceOn
13 Sangali S, Brandelli A. 2000. Isolation and characterization of a novel feather-degrading bacterial strain. Appl. Biochem. Biotechnol. 87: 17-24.   DOI   ScienceOn
14 Singh J. 2002. Optimization of an extracellular protease of Chrysosporium keratinophilum and its potential in bioremediation of keratinic wastes. Mycopathologia 156: 151-156.
15 Venugopal M, Saramma AV. 2006. Characterization of alkaline protease from Vibrio fluvialis strain VM 10 isolated from a mangrove sediment sample and its application as a laundry detergent additive. Process Biochem. 41: 1239-1243.   DOI   ScienceOn
16 Wang JJ, Shih JCH. 1999. Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29. J. Ind. Microbiol. Biotechnol. 222: 608-616.
17 Wawrzkiewicz K, Wolski T, Lobarzewski J. 1991. Screening the keratinolytic activity of dermatophytes in vitro. Mycopathologia 114: 1-8.   DOI   ScienceOn
18 Agrebi R, Haddar A, Hajji M, Frikha F, Manni L, Jellouli K. 2009. Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26: Characterization and statistical media optimization. Can. J. Microbiol. 55: 1049-1061.   DOI   ScienceOn
19 Allpress JD, Mountain G, Gowland PC. 2002. Production, purification and characterization of an extracellular keratinase from Lysobacter NCIMB 9407. Lett. Appl. Microbiol. 34: 337-342.   DOI   ScienceOn
20 Balint B, Bagi Z, Toth A, Rakhely G, Perei K, Kovacs K. 2005. Utilization of keratin-containing biowaste to produce biohydrogen. Appl. Microbiol. Biotechnol. 69: 404-410.   DOI
21 Anbu P, Gopinath SCB, Hilda A, Lakshmipriya T, Annadurai G. 2005. Extracellular keratinase from Trychophyton sp. HA-2 isolated from leather dumping soil. Enzyme Microb. Technol. 36: 639-647.   DOI   ScienceOn
22 Arrondo JL, Young NM, Mantsch HH. 1988. The solution structure of concanavalin A probed by FT-IR spectroscopy. Biochim. Biophys. Acta 952: 261-268.   DOI   ScienceOn
23 Banerjee R, Bhattacharya BC. 1992. Extracellular alkaline protease of newly isolated Rhizopus oryzae. Biotechnol. Lett. 14: 301-304.   DOI
24 Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
25 Brandelli A. 2005. Hydrolysis of native proteins by a keratinolytic protease of Chryseobacterium sp. Ann. Microbiol. 55: 47-50.
26 Chon D, Kwon T. 2001. Isolation of keratinolytic protease producing microorganism and its cultivation condition. San'oeb Misaengmul Haghoeji 29: 134-141.
27 Correa AP, Daroit DJ, Brandelli A. 2010. Characterization of a keratinase produced by Bacillus sp. P7 isolated from an Amazonian environment. Int. Biodeter. Biodegrad. 64: 1-6.   DOI   ScienceOn
28 El-Refai HA, AbdelNaby MA, Gaballa A, El-Araby MH, Abdel Fattah AF. 2005. Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Process Biochem. 40: 2325-2332.   DOI   ScienceOn
29 Daroit DJ, Simonetti A, Hertz PF, Brandelli A. 2008. Purification and characterization of an extracellular betaglucosidase from Monascus purpureus. J. Microbiol. Biotechnol. 18: 933-941.
30 De Azaredo LAI, De Lima MB, Coelho RRR, Freire DM. 2006. Thermophilic protease production by Streptomyces sp. 594 in submerged and solid-state fermentations using feather meal. J. Appl. Microbiol. 100: 641-647.   DOI   ScienceOn
31 El-Gendy MMA. 2010. Keratinase production by endophytic Penicillium spp. Morsy1 under solid-state fermentation using rice straw. Appl. Biochem. Biotechnol. 162: 780-794.   DOI
32 Eliades L, Cabello M, Voget CE, Galarza B, Saparrat M. 2010. Screening for alkaline keratinolytic activity in fungi isolated from soils of the biosphere reserve "Parque Costero del Sur" (Argentina). World J. Microbiol. Biotechnol. 26: 2105-2111.   DOI
33 Farag AM, Hassan MA. 2004. Purification, characterization and immobilization of a keratinase from Aspergillus oryzae. Enzyme Microb. Technol. 34: 85-93.   DOI   ScienceOn
34 Ferreyra OA, Cavalitto SF, Hours RA, Ertola RJ. 2002. Influence of trace elements on enzyme production: Protopectinase expression by a Geotrichum klebahnii strain. Enzyme Microb. Technol. 31: 498-504.   DOI   ScienceOn
35 Friedrich AB, Antranikian G. 1996. Keratin degradation by Fervidobacterium pennovorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl. Environ. Microbiol. 62: 2875-2882.
36 Gradisar H, Kern S, Friedrich J. 2000. Keratinase of Doratomyces microsporus. Appl. Microbiol. Biotechnol. 53: 196-200.   DOI   ScienceOn
37 Galarza B, Goya L, Cantera C, Garro ML, Reinoso HM, Lopez LMI. 2004. Fungal biotransformation of bovine hair part I: Isolation of fungus with keratinolytic activity. J. Soc. Leather Technol. Chem. 88: 93-98.
38 Galarza BC, Goya L, Garro ML, Mercerat J, Hours RA, Cantera CS. 2005. Fungal biotransformation of bovine hair part II: Biomass and proteases produced as a function of incubation time. Assessment of hair waste digestion. J. Soc. Leather Technol. Chem. 90: 169-172.
39 Garcia-Carreno FL, Dimes LE, Haard NF. 1993. Substrategel electrophoresis for composition and molecular weight of proteinases or proteinaceous proteinase inhibitors. Anal. Biochem. 214: 65-69.   DOI   ScienceOn
40 Gupta R, K Beg, P Lorenz. 2002. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32.   DOI   ScienceOn
41 Hossain MS, Azad AK, Abu Sayem SM, Mostafa G, Mozammel Hoq Md. 2007. Production and partial characterization of feather-degrading keratinolytic serine protease from Bacillus licheniformis MZK-3. J. Biol. Sci. 7: 599-606.   DOI
42 Huang Q, Peng Y, Li X, Wang H, Zhang Y. 2003. Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr. Microbiol. 46: 169-173.   DOI   ScienceOn
43 Jeong J, Lee O, Jeon Y, Kim J, Lee N. 2010. Production of keratinolytic enzyme by a newly isolated feather-degrading Stenotrophomonas maltophilia that produces plant growthpromoting activity. Process Biochem. 45: 1738-1745.   DOI   ScienceOn
44 Laemmli UK. 1970. Cleavage of structural proteins during assembly of head of bacteriophage T4. Nature 227: 680-685.   DOI   ScienceOn
45 Joshi SG, Tejashwini MM, Revati N, Sridevi R, Roma D. 2007. Isolation, identification and characterization of a feather degrading bacterium. Int. J. Poultry Sci. 6: 689-693.   DOI
46 Kainoor P, Naik GR. 2010. Production and characterization of feather degrading keratinase from Bacillus sp. JB 99. Indian J. Biotechnol. 9: 384-390.
47 Kumar R, Balaji S, Uma TS, Mandal AB, Sehgal PK. 2010. Optimization of influential parameters for extracellular keratinase production by Bacillus subtilis (MTCC9102) in solid state fermentation using horn meal - a biowaste management. Appl. Biochem. Biotechnol. 160: 30-39.   DOI   ScienceOn
48 Lee Y, Kim J, Kim H, Lee J. 2004. Production and characterization of keratinase from Paracoccus sp. WJ-98. Biotechnol. Bioproc. E 9: 17-22.   DOI   ScienceOn
49 Liggieri C, Arribere MC, Trejo S, Canals F, Aviles F, Priolo N. 2004. Purification and biochemical characterization of asclepain c I from the latex of Asclepias curassavica L. Protein J. 23: 403-411.   DOI   ScienceOn
50 Macedo AJ, Beys da Silva WO, Gava R, Driemeier D, Pegas Henriques JA, Termignoni C. 2005. Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities. Appl. Environ. Microbiol. 71: 594-596.   DOI   ScienceOn
51 Marcondes NR, Taira CL, Vandresen DC, Svidzinski TIE, Kadowaki MK, Peralta RM. 2008. New feather-degrading filamentous fungi. Microb. Ecol. 56: 13-17.   DOI
52 Mazotto AM, Lage Cedrola SM, Lins U, Rosado AS, Silva KT, Chaves JQ, et al. 2010. Keratinolytic activity of Bacillus subtilis AMR using human hair. Lett. Appl. Microbiol. 50: 89-96.   DOI   ScienceOn