• Title/Summary/Keyword: solar fuel

Search Result 392, Processing Time 0.028 seconds

Development of Image sensor based automatic sun tracking system (이미지 센서기반의 태양광 자동 추적 시스템 개발)

  • Kim, Se Yoon;An, Seo Kil;Kim, Sung Ho
    • Smart Media Journal
    • /
    • v.3 no.1
    • /
    • pp.22-27
    • /
    • 2014
  • Recently, domestic energy environment is facing new challenges owing to the depletion of fossil fuel such as oil. Renewable energy resources including solar and wind energy are attracting more interests than ever before. However, solar power system is costly in comparison with the conventional power generation systems and also the energy density is low. Furthermore, large area is required in order to install solar power system. Generally, performance of solar power system is affected by weather conditions and alignment of sun and the solar cell modules. In this study, a new type of sun tracking system for solar power system is proposed. To verify the feasibility of the proposed system, actual implementation of prototype system and experiments are carried out.

The Greenhouse-Gas Mitigation Potential analysis by Distribution of Solar Thermal System in Housing Sector (태양열난방시스템 도입에 따른 주거부문에서의 온실가스 감축 잠재량 분석)

  • Jeong, Young-Sun;Mun, Sun-Hye;Yu, Ki-Hyung
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.1
    • /
    • pp.32-39
    • /
    • 2012
  • New and renewable energy systems(solar thermal system, photovoltaic system, geothermal system, wind power system) are environmentally friendly technologies and these in South Korea are very important measures to reduce greenhouse-gas(GHG) and to push ahead with Green Growth. The purpose of this paper is to analyze GHG mitigation potential by distribution of solar thermal system in housing sector with bottom-up model called 'Long-range Energy Alternative Planning system'. Business as usual(BAU) was based on energy consumption characteristic with the trend of social-economic prospects and the volume of housing. The total amount of GHG emission of BAU was expected to continuous increase from 66.0 million-ton $CO_{2e}$ in 2007 to 73.1 million-ton $CO_{2e}$ in 2030 because of the increase of energy consumption in housing. The alternative scenario, distribution of solar thermal system in housing sector had GHG mitigation potential 1.54 million-ton $CO_{2e}$ in 2030. The results of this study showed that new and renewable energy systems made a contribution of reducing the use of fossil fuel and the emission of greenhouse-gas in building.

Power Sharing and Cost Optimization of Hybrid Renewable Energy System for Academic Research Building

  • Singh, Anand;Baredar, Prashant
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1511-1518
    • /
    • 2017
  • Renewable energy hybrid systems look into the process of choosing the finest arrangement of components and their sizing with suitable operation approach to deliver effective, consistent and cost effective energy source. This paper presents hybrid renewable energy system (HRES) solar photovoltaic, downdraft biomass gasifier, and fuel cell based generation system. HRES electrical power to supply the electrical load demand of academic research building sited in $23^{\circ}12^{\prime}N$ latitude and $77^{\circ}24^{\prime}E$ longitude, India. Fuzzy logic programming discover the most effective capital and replacement value on components of HRES. The cause regarding fuzzy logic rule usage on HOMER pro (Hybrid optimization model for multiple energy resources) software program finds the optimum performance of HRES. HRES is designed as well as simulated to average energy demand 56.52 kWh/day with a peak energy demand 4.4 kW. The results shows the fuel cell and battery bank are the most significant modules of the HRES to meet load demand at late night and early morning hours. The total power generation of HRES is 23,794 kWh/year to the supply of the load demand is 20,631 kWh/year with 0% capacity shortage.

Hardware passive power control simulation of hybrid propulsion system for electric propulsion aircraft (전기추진 비행기용 하이브리드 추진시스템 패시브 전력제어 하드웨어 시뮬레이션)

  • Park, Poo-Min;Lee, Kang-Yeop;Hwang, Oh-Sik;Kim, Young-Mun;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.544-547
    • /
    • 2011
  • This paper describes on hardware simulation of passive power control of propulsion system for electric propulsion aircraft of KARI. The propulsion system uses hybrid power system that is composed of solar cell, fuel cell and battery. The fuel cell is replaces by simulator due to its difficulty in handling while the other components are the same as that will be used on board. As the result, reliable power supply for propulsion is confirmed and each power source is well operated showing its characteristics.

  • PDF

Optimization of Stand-Alone Hybrid Power Systems Using HOMER Program (HOMER 프로그램을 이용한 독립형 하이브리드 발전시스템 최적화)

  • Yang, Su-Hyung;Boo, Chang-Jin;Kim, Ho-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.11-18
    • /
    • 2012
  • Diesel fuel is expensive because transportation to remote areas adds extra cost, and it causes air pollution by engine exhaust. Providing a feasible economical and environmental solution to diesel generators is important. A hybrid system of renewable plants and diesel generators can benefit islands or other isolated communities and increase fuel savings. Renewable energy is, however, a natural source that produces a fluctuating power output. In this paper, hybrid power system of the marado lighthouse is proposed to supply stable power in the stand-alone hybrid power system. The proposed hybrid power system consists of the diesel generator, wind turbine, photovoltaic, fuel cell, and battery bank. To decrease the carbon emissions and find the optimization, the cost analysis of hybrid system is simulated using HOMER program and the optimized hybrid power system is designed.

2011, The Analysis Operating Characteristics of Photovoltaic System in Naju-city (2011년 나주시 태양광 발전 시스템의 운전특성)

  • Hyun, Jeong-Woo;Lee, Nam-Jin;Cha, In-Su;Kim, Dong-Mook;Choi, Jeong-Sik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.359-363
    • /
    • 2011
  • Building-integrated photovoltaics(BIPV)are increasingly incorporate into new domestic and industrial buildings as a proncipal or ancillary source of electrical power, and are on of the fastest growing segments of the photovoltaic industry. This paper presents operational features analysis and PCS(Power conversion System) factors of grid-connected 30kW BIPV on library of Dongshin University. The data consisted of insolation, Temperature, solar-cell performance and inverter performance are collected by IVIsion web monitoring system and analyzed. The analyzed data gave this paper effect elements of optimal operation.

  • PDF

DC Offset Current Compensation Method of Transformeless Fuel Cell/PV PCS (무변압기형 연료전지/태양광용 PCS의 직류분 보상기법)

  • Park, Bong-Hee;Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lee, Dong-Ha;Lee, Young-Kwon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.92-97
    • /
    • 2013
  • This paper proposes DC offset current compensation method of transformerless fuel cell/PV PCS. DC offset current is generated by the unbalanced internal resistance of the switching devices in full bridge topology. The other cause is the sensitivity of the current sensor, which is lower than DSP in resolution. If power converter system has these causes, the AC output current in the inverter will generate the DC offset. In case of transformerless grid-connected inverter system, DC offset current is fatal to grid-side, which results in saturating grid side transformer. Several simulation results show the difficulties of detecting DC offset current. Detecting DC offset current method consists of the differential amplifiers and PWM is compensated by the output of the Op amp circuit with integrator controller. PSIM simulation verifies that the proposed method is simpler and more effective than using low resolution current sensor alone.

Technology Competitiveness Analysis of New & Renewable Energy in Major Countries (주요국의 신재생에너지 분야 기술경쟁력 분석 연구)

  • Ha, Su-Jin;Choi, Ji-Hyeok;Oh, Sang Jin
    • New & Renewable Energy
    • /
    • v.18 no.3
    • /
    • pp.72-84
    • /
    • 2022
  • As the threat of climate change escalates, 'net-zero' has become a priority for the international community, and the use of new and renewable energy sources is expected to play a significant role in reaching international carbon neutrality. Here, we evaluate technological competitiveness in terms of implementation and technology by analyzing scientific literature and patents in the new and renewable energy fields of five major countries. For the past 10 years (2009-2019), the most active areas of new and renewable energy research and development have been solar power, wind power, waste, and fuel cells. China is the forerunner in implementation, whereas the United States has the most advanced technology. Portfolio analysis revealed that Korea's fuel cell, the United States' bioenergy, China's waste, Japan's solar and fuel cell, and the European Union's wind power have shown to be in Star Field respectively. Technological competitiveness analysis found that Korea is lagging behind other countries in the new and renewable energy sector, and needs to set a new direction for future carbon-neutral research and development, investment, and policy.

The Energy and Environmental Performance of Hydrogen Fuel Cell System in Apartment Complex (공동주택 단지 적용 수소연료전지 시스템의 에너지 및 환경 성능 평가)

  • Kim, Yong-Hee;Kim, Hae-Jung;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.199-204
    • /
    • 2009
  • This study analyzed the central heating system and the cogeneration system among the methods of supplying energy which have application to the Hydrogen Fuel Cell system and apartment complexes for performance evaluations. Therefore, a feasibility study on the first application of this system in an apartment complexes was considered to evaluate the energy performance by the amount of fuel consumed by the system using Hydrogen Fuel Cell energy and environmental performance by the amount of greenhouse gas emissions. As a result, the Hydrogen Fuel Cell system consumes 83% of fuel while the cogeneration system consumes 81% of fuel comparison to conventional central heating system. The Hydrogen Fuel Cell and the cogeneration system produce 73%t and 70% of greenhouse gas emissions in comparison to conventional central heating system.

  • PDF

Forecasting the Grid Parity of Solar Photovoltaic Energy Using Two Factor Learning Curve Model (2요인 학습곡선 모형을 이용한 한국의 태양광 발전 그리드패리티 예측)

  • Park, Sung-Joon;Lee, Deok Joo;Kim, Kyung-Taek
    • IE interfaces
    • /
    • v.25 no.4
    • /
    • pp.441-449
    • /
    • 2012
  • Solar PV(photovoltaic) is paid great attention to as a possible renewable energy source to overcome recent global energy crisis. However to be a viable alternative energy source compared with fossil fuel, its market competitiveness should be attained. Grid parity is one of effective measure of market competitiveness of renewable energy. In this paper, we forecast the grid parity timing of solar PV energy in Korea using two factor learning curve model. Two factors considered in the present model are production capacity and technological improvement. As a result, it is forecasted that the grid parity will be achieved in 2019 in Korea.