• Title/Summary/Keyword: soil saturation

Search Result 452, Processing Time 0.024 seconds

Slope Stability Analysis by Rainfall Infiltration (강우침투에 따른 사면의 안정성 평가)

  • Han, Heui-Soo;Cho, Jae-Ho;Yang, Nam-Yong;Shin, Baek-Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.29-38
    • /
    • 2011
  • The unsaturated layers by rainfall infiltration are not properly reflected in construction codes to do slope design. The objective of this paper is to analyze the slope behavior according to the saturation layer increase resulted from the rainfall infiltration, to do that the laboratory slope model apparatus was adopted. From the model apparatus, the variation of water content and strength parameters of the model slope were analyzed. The safety factors of model slope was decreased, if saturation layer was increased from 3.0m to 4.5m, which means ground water level 3m selected from construction codes makes higher safety level. Also, if the ground water level is located in soil surface, the lower safety level will show up. Therefore, to make the proper slope design, the experiments and analysis of variation of saturation layer is needed.

Evaluation of Available Soil Silicon Extracting Procedures for Oriental Melon (참외 시설재배 토양에 대한 유효규산 추출방법 비교)

  • Cho, Hyun-Jong;Choe, Hui-Yeol;Lee, Yong-Woo;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.4
    • /
    • pp.251-258
    • /
    • 2004
  • Soil testing for silicon (Si) in the upland soils has not been sufficiently investigated. The objective of this study was to identify a suitable Si extraction method for upland soils of oriental melon (Cucumis melo L.). Thirty-eight surface soil samples and matured leaf samples were collected from plastic film houses in Sungju, Gyeongbuk province. In the laboratory, six different methods were used for extracting Si from the soils. The methods included 0.5 N HCl extraction, 1 N sodium acetate buffer (PH 4.0) extraction, citric acid 1% extraction, water extraction, Tiis buffer pH 7.0 extraction, and extraction after incubation with water for 1 week. The concentration of dissolved Si in soil extracts from all methods was determined colorimetrically. With 1 N sodium acetate buffer extraction, as the available soil Si increased, the concentration ofSi in oriental melon leaf increased until around $14g\;SiO_2\;kg^{-1}$ was reached in the form of a saturation curve. Also, among the methods studied, extraction with 1 N sodium acetate buffer was the only method provided a significant linear correlation with oriental melon leaf Si content in the range of extractable soil Si lower than the level which inducing Si saturation in oriental melon leaf. These results indicate that 1 N sodium acetate buffer extraction procedure is the best soil Si test method for upland soils of oriental melon. This sodium acetate buffer extraction procedure is rapid and quite well acquainted with scientists and farmers, since the method has been used for routine paddy soil testing.

Taxonomical Classification of Yongdang Series (용당통의 분류)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.393-398
    • /
    • 2009
  • This study was conducted to reclassify Yongdang series based on the second edition of Soil Taxonomy : A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Morphological properties of typifying pedon of Yongdang series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Yongdang series has dark reddish brown (5YR 2/3) silt loam Ap horizon (0~14 cm), dark brown (7.5YR 2/3) silt loam BA horizon (14~32 cm), dark brown (7.5YR 2/3) clay loam Bt horizon (32~57 cm), dark yellowish brown (10YR 4/6) silty clay loam Btx1 horizon (57~110 cm), and dark yellowish brown (10YR 4/6) silty clay loam Btx2 horizon(more than 110 cm). That occurs on gently sloping lava plain and is derived from baslt materials. The typifying pedon has an argillic horizon from a depth of 32 to more than 110 cm and a fragipan from a depth of 57 to more than 110 cm. That has a base saturation (sum of cations) of 35% or more at 75 cm below the upper boundary of the fragipan. That can be classified as Alfisol, not as Inceptisol. The typifying pedon has udic soil moisture regime, and can be classified as Udalf. That has a fragipan with an upper boundary within 100 cm of the mineral soil surface, and keys out as Fragiudalf. Also that meets the requirements of Typic Fragiudalf. That has 18% to 35% clay at the particle-size control section, and has thermic soil temperature regime. Yongdang series can be classified as fine loamy, mixed, thermic family of Typic Fragiudalfs, not as fine loamy, mixed, thermic family of Aquic Eutrudepts.

Soil Physiochemical Properties in Leaf-yellowing Black Locust (Robinia Pseudo-acacia L.) Stands (아까시나무 황화현상 발생임분의 토양 이화학적 특성)

  • Lee, Seung-Woo;Byun, Jae-Kyoung;Ji, Dong-Hun;Kwon, Young-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.409-414
    • /
    • 2009
  • In 1970's Black locust(Robinia pseudoacacia) had been widely planted Korea as an important forest greening species for erosion control afforestation. Since 2000, however, the tree's leaf-yellowing symptom has often been observed at a limited region and then spreaded out over the country in 2006. This study was conducted to study soil physiochemical properties of black locust stands with and without the leaf-yellowing symptom in Osan, Gyeonggi province. Most of soils in sampling sites were mostly slightly eroded, dry, and moderately dry. Available soil depth(16cm) and total soil depth(26cm) in leaf-yellowing (LY) site were significantly lower than in non leaf-yellowing (Non-LY) site's soil depths which were 30cm and 56cm, respectively. And solid phase proportion and bulk density in soils were lower in LY site than in non-LY site soils, while soil liquid phase proportion was also low. It could reflect that LY site soils might have a lower air and moisture movement in the rhizosphere of black locust stand compared with non-LY site soils. Soil acidity in both sites was very strong acid, soil pH (4.42) of LY site was slightly lower than non-LY site's (pH 4.54). Content of available phosphorous, exchangeable $Ca^{2+}$ and $Mg^{2+}$ and percent base saturation were less than LY site. These results indicated that soil physiochemical condition in LY site, more deteriorated than non-LY site, should adversely affect the retention and supply capacity of soil nutrients and moisture. Therefore the black locust may be more sensitive to other environmental stresses.

A Study on the Design Load of Artificial Soil Ground (인공지반의 설계하중 산정에 관한 연구)

  • Youn, Seong-Cheol;Kim, Tae-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.36-46
    • /
    • 2009
  • The objective of this study is to analyze the effect of artificial soil ground on a structure. When the artificial soil ground is planted, the technical factors to be considered will be the load for buildings and the growth of plants. There are no current studies of the effect of artificial soil ground on a structure and this study will analyze the load effects of artificial soil ground, which mixes both pearlite and natural soil on structures. The load affecting the structures due to artificial soil ground will be maximized when the artificial soil ground becomes saturated, and which would occur when the rainfall intensity exceeds the infiltration capacity of the artificial soil ground. In order to determine whether the artificial soil ground has reached saturation or not, a 10 years frequency and 10 minutes rainfall intensity which is used for in urban drain design, is utilized. The hydraulic conductivity of artificial soil and mixed soil has been changed depending on the proportion of the mix, It has a range of fluctuation in the degree of hardening, in particular, but does not exceed the 10 minutes rainfall intensity over 10 years frequency in the most cases. Therefore, it would be efficient to apply the saturated unit weight of artificial soil ground as the design load of a structure.

Prediction of Soil-Water Characteristic Curve and Relative Permeability of Jumunjin Sand Using Pore Network Model (공극 네트워크 모델을 이용한 주문진표준사의 함수특성곡선 및 상대투수율 예측에 관한 연구)

  • Suh, Hyoung Suk;Yun, Tae Sup;Kim, Kwang Yeom
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • This study presents the numerical results of soil-water characteristic curve for sandy soil by pore network model. The Jumunjin sand is subjected to the high resolution 3D X-ray computed tomographic imaging and its pore structure is constructed by the web of pore body and pore channel. The channel radius, essential to the computation of capillary pressure, is obtained based on the skeletonization and Euclidean Distance transform. The experimentally obtained soil-water characteristic curve corroborates the numerically estimated one. The pore channel radius defined by minimum radii of pore throat results in the slightly overestimation of air entry value, while the overall evolution of capillary pressure resides in the acceptable range. The relative permeability computed by a series of suggested models runs above that obtained by pore network model at high degree of saturation.

Structure and Management Devices of Vegetation at Weolmi Urban Nature Park, Incheon (도시자연공원의 식생구조에 따른 관리방안 - 인천광역시 월미공원의 사례 -)

  • Cho, Woo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.1
    • /
    • pp.61-74
    • /
    • 2002
  • The purpose of this study is to propose vegetation management devices through analyzing the actual vegetation, flora, plant community structure and soil chemical concentrations in Weolmi urban nature park, Incheon. The actual vegetation of Weolmi Park in various areas is composed of urbanization area(2 types, 25.9%), landscape planting area(4 types, 16.1%), grass and marsh area(5 types, 7.6%) and mountain forest areal(14 types, 50.4%). The flora is composed of 295 taxa with 80 families, 253 species, 35 varieties and 7 formas, and among them there are 16 naturalized plant families, 39 species, 3 varieties. In reflection of size, the number of the species seems high but most of the them are under influence of human disturbance. Nine survey plots of plant community structure are classified into two groups. One is the semi-natural plant community(Prunus sargentii-Acer palmatum, Quercus accutissma-Prunus sargentii, Quercus serrata-Quercus accutissma-Prunus sargentii, Prunus sargentii, and Zelkova serrata-Prunus sargentii) that migrated finn the planting forest to the natural forest and the other is planting forest(Pinus koraienssis-Pinus thunbergii-Abies holophylla-Chamaectparis obtusa, Prunus sargentii, Pinus thunbergii-Alnus firma, Zelkova serrata). The average pH is 4.65 which means the soil acidity is quite high. The concentration of K, Ca, Mg and base saturation is very low. It seems that the environmental pollutants from Incheon Port and industrial plants near by survey site and long-distance transport of air pollutants from China made the soil condition worse. On the basis of the results above, six vegetation management devices are suggested: 1) removing the hazard plants(Pueraia thunbergiana and Humulus japonica), 2) natural landscape management of the middle and long term, 3) increasing species diversity, 4) Robinia pseudoacacia management, 5) keeping the naturalized plants from being distributed any further inside the mountain forest, 6) improving soil acidification.

Variation of Soil Characteristics in Lava Plain (용암류대지(熔岩類臺地)에 분포(分布)한 토양(土壤) 특성(特性)의 변이분석(變異分析))

  • Park, Chang-Seo;Um, Ki-Tae;Min, Kyeong-Beom
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.4
    • /
    • pp.343-348
    • /
    • 1984
  • Variation of soil properties within mapping unit of lava plain soils was statistically summarized. Properties such as particle size distribution, moisture retention, color, pH, and CEC are relatively unaffected by soil management while Na, K, base saturation, and available $P_2O_5$ most affected by management. These soils were correctly classified with regard to order at 66.5, to greatgroup at 56.0, and to series at 43.8%. CV values greater than 90% could be symptomatic of skew distribution. Distributions of sand content and some chemical properties were log-normal.

  • PDF

Test for the TOPMODEL′s Ability to Predict Water Table Depths of the Transient Saturation Zones which Are Formed on the Steep Hillslope (급사면에 형성된 일시적 포화대의 지하수면깊이에 대한 TOPMODEL의 예측능력 검증)

  • An, Jung-Gi
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1035-1046
    • /
    • 2003
  • In order to evaluate the TOPMODEL's prediction ability for spatial distribution of water table depths, two major assumptions and governing equation of water table depth are tested. For the test, data of hydrological observations are used and a soil survey is made in the steep hillslope with thin soils. Responses of water table and hydraulic properties of soil are coincident with two major assumptions of the TOPMODEL's such as water table gradient parallel to the local topographical slope and exponential decline in transmissivity with depths. Soil texture and the decline rate of transmissivity(f) we homogeneous in space at the 0∼0.3m depths of the soil of the hillslope, but they are heterogeneous in space below its 0.3m depths due to the vertical change of soil texture and the ‘f’. It is shown that the TOPMODEL's equation can be used for simulating distribution of water table depth at the depths with uniform values of the 'f'.

Estimation of Stream Discharge using Antecedent Precipitation Index Models in a Small Mountainous Forested Catchment: Upper Reach of Yongsucheon Stream, Gyeryongsan Mountain (산악 산림 소유역에서 선행강우지수를 이용한 하천유량 추정: 계룡산 용수천 상류)

  • Jung, Youn-Young;Koh, Dong-Chan;Han, Hye-Sung;Kwon, Hong-Il;Lim, Eun-Kyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.36-45
    • /
    • 2016
  • Variability in precipitation due to climate change causes difficulties in securing stable surface water resource, which requires understanding of relation between precipitation and stream discharge. This study simulated stream discharge in a small mountainous forested catchment using antecedent precipitation index (API) models which represent variability of saturation conditions of soil layers depending on rainfall events. During 13 months from May 2015 to May 2016, stream discharge and rainfall were measured at the outlet and in the central part of the watershed, respectively. Several API models with average recession coefficients were applied to predict stream discharge using measured rainfall, which resulted in the best reflection time for API model was 1 day in terms of predictability of stream discharge. This indicates that soil water in riparian zones has fast response to rainfall events and its storage is relatively small. The model can be improved by employing seasonal recession coefficients which can consider seasonal fluctuation of hydrological parameters. These results showed API models can be useful to evaluate variability of streamflow in ungauged small forested watersheds in that stream discharge can be simulated using only rainfall data.