Soil Physiochemical Properties in Leaf-yellowing Black Locust (Robinia Pseudo-acacia L.) Stands

아까시나무 황화현상 발생임분의 토양 이화학적 특성

  • Lee, Seung-Woo (Division of Forest Restoration, Korea Forest Research Institute) ;
  • Byun, Jae-Kyoung (Division of Forest Restoration, Korea Forest Research Institute) ;
  • Ji, Dong-Hun (Division of Forest Restoration, Korea Forest Research Institute) ;
  • Kwon, Young-Dae (Gyeonggi Forest Environment Research Institute)
  • 이승우 (국립산림과학원 산림복원연구과) ;
  • 변재경 (국립산림과학원 산림복원연구과) ;
  • 지동훈 (국립산림과학원 산림복원연구과) ;
  • 권영대 (경기도 산림환경연구소)
  • Received : 2009.10.06
  • Accepted : 2009.11.20
  • Published : 2009.12.30

Abstract

In 1970's Black locust(Robinia pseudoacacia) had been widely planted Korea as an important forest greening species for erosion control afforestation. Since 2000, however, the tree's leaf-yellowing symptom has often been observed at a limited region and then spreaded out over the country in 2006. This study was conducted to study soil physiochemical properties of black locust stands with and without the leaf-yellowing symptom in Osan, Gyeonggi province. Most of soils in sampling sites were mostly slightly eroded, dry, and moderately dry. Available soil depth(16cm) and total soil depth(26cm) in leaf-yellowing (LY) site were significantly lower than in non leaf-yellowing (Non-LY) site's soil depths which were 30cm and 56cm, respectively. And solid phase proportion and bulk density in soils were lower in LY site than in non-LY site soils, while soil liquid phase proportion was also low. It could reflect that LY site soils might have a lower air and moisture movement in the rhizosphere of black locust stand compared with non-LY site soils. Soil acidity in both sites was very strong acid, soil pH (4.42) of LY site was slightly lower than non-LY site's (pH 4.54). Content of available phosphorous, exchangeable $Ca^{2+}$ and $Mg^{2+}$ and percent base saturation were less than LY site. These results indicated that soil physiochemical condition in LY site, more deteriorated than non-LY site, should adversely affect the retention and supply capacity of soil nutrients and moisture. Therefore the black locust may be more sensitive to other environmental stresses.

아까시나무는 척박지에서 적응력이 뛰어나 과거 산림녹화와 사방조림 등에 많이 이용된 수종이다. 그러나 2000년 이후 황화현상이 국지적으로 빈번히 발생해 오다가 2006년에는 전국적으로 확산된 바 있다. 따라서 본 연구는 경기도 오산시 3개 지역에서 아까시나무의 황화현상 피해지와 미피해지 내에서 산림토양의 물리화학적 특성을 조사, 분석하여 그 관계성을 파악하고자 수행되었다. 조사지 일대 토양은 사방지토양, 갈색건조산림토양 및 갈색약건산림토양이 주를 이루었다. 피해지의 유효토심(16cm)과 전토심(25cm)은 미피해지(30cm, 56cm)에 비해 현저히 낮게 나타났다. 또한 미피해지에 비해 피해지 토양에서 고상률은 높은 반면 기상률은 낮고, 가비중도 높은 결과를 보여 근계부내 공기와 수분 이동성의 상대적 저하를 반영하였다. 또한 전체 조사지가 산성도가 매우 높은 강산성 토양이지만 피해지의 토양산도는 평균 pH 4.42로 미피해지의 pH 4.54보다 다소 낮았으며, 토양 내 유효인산, 칼슘, 마그네슘 함량과 염기포화율의 결과 역시 피해지에서 낮게 나타났다. 이러한 미피해지에 비해 열악한 황화현상 피해지의 토양 물리화학적 성질은 양분과 수분에 대한 보유 및 공급능력의 상대적 저하로 아까시나무 임분이 다른 환경 스트레스에 보다 민감하게 반응할 수 있음을 반영한다.

Keywords

References

  1. Compton, J.E., and Cole, D.W., 1998. Fate and effects of phosphorus additions in soils under N2-fixing red alder. Biogeochemistry 53:225-257 https://doi.org/10.1023/A:1010646709944
  2. Du$\breve{c}$i$\breve{c}$, T., D. Berthold, R. Langenfeld-Heyser, F. Beese, and A.Polle. 2009. Mycorrhizal communities in relation to biomass production and nutrient use efficiency in two varieties of Douglas fir (Pseudotsuga menziesii var. menziesii and var. glauca) in different forest soils. Soil Biology & Biochemistry 41:742-753 https://doi.org/10.1016/j.soilbio.2009.01.013
  3. Gillespie, A.R. and P.E. Pope. 1990. Rhizosphere acidification increases phosphorous recovery by black locust: I. Induced acidification and soil response. Soil Sci. Soc. Am. J., 54:533-537 https://doi.org/10.1890/1540-9295(2005)003[0370:MTIITF]2.0.CO;2
  4. Gradowski, T., and S.C. Thomas. 2006. Phosphorus limitation of sugar maple growth in central Ontario. Forest Ecology and Management 226(1):104-109 https://doi.org/10.1016/j.foreco.2005.12.062
  5. Jeong, J.H., C.S. Kim, K.S. Goo, C.H. Lee, H.G. Won, and J.G. Byun. 2003. Phsico-chemical properties of Korean forest soils by parent rocks. Jour. Korean For. Soc. 92(3):254-262
  6. Johnson, D.W., J. Turner, and J.M. Kelly. 1982. The effects of acid rain on forest nutrient status. Water Resour. Res. 18:449-461 https://doi.org/10.1029/WR018i003p00449
  7. Jung, S.C., T.C. Huh, and S.H. Joo. 2003. Changes of soil properties in Black Locust(Robinia pseudoacacia L.) stand and adjacent stand. Agric. Res. Bull. Kyungpook Natl. Univ. 21:39-47
  8. Keresztesi, B. 1988. Black Locust: the tree of agriculture. Outlook on Agr. 17:77-85 https://doi.org/10.1177/003072708801700207
  9. Liu, G., T. Deng. 1991. Mathematical model of the relationship between nitrogen-fixation by black locust and soil conditions. Soil Biology and Biochemistry 23(1):1-7 https://doi.org/10.1016/0038-0717(91)90155-D
  10. Maekawa, M. and N. Nakagoshi. 1997. Impact of biological invasion of Robinia pseudo-acacia on zonation and species diversity of dune vegetation in Central Japan. Japanese Journal of Ecology 47(2):131-143
  11. Marschner, H. 1995. Mineral nutrition of higher plants. Academic Press, London, 861pp
  12. NIAST. 2000. Methods of soil and crop plant analysis, National Institute of Agricultural Science and Technology, Suwon, Korea
  13. Schlegel, H., R.G. Amundson, A. Huttermann. 1992. Element distribution in red spruce(Picea rubens)fine roots; evidence for aluminium toxicity at Whiteface Mountain. Can. J. For. Res. 22:1132-1138 https://doi.org/10.1139/x92-150
  14. 신준환 외 19인. 2006. 아까시나무 황화피해 원인 구명 및 관리방안. 국립산림과학원 연구보고(06-16). 150pp
  15. 우종호. 1994. 아까시나무 임분의 자원화에 관한 연구. 경북대학교 박사학위논문. 113pp
  16. 이경준. 1993. 수목생리학. 서울대학교출판부. 504pp
  17. 이여하, 정인구. 1968. 수개의 토양인자가 아까시아나무 생장에 미치는 영향. 건국학술지 9(1) : 339-343.