DOI QR코드

DOI QR Code

Prediction of Soil-Water Characteristic Curve and Relative Permeability of Jumunjin Sand Using Pore Network Model

공극 네트워크 모델을 이용한 주문진표준사의 함수특성곡선 및 상대투수율 예측에 관한 연구

  • Suh, Hyoung Suk (School of Civil and Environmental Engrg., Yonsei Univ.) ;
  • Yun, Tae Sup (School of Civil and Environmental Engrg., Yonsei Univ.) ;
  • Kim, Kwang Yeom (Korea Institute of Civil Engrg. and Building Technology)
  • 서형석 (연세대학교 토목환경공학과) ;
  • 윤태섭 (연세대학교 토목환경공학과) ;
  • 김광염 (한국건설기술연구원 Geo-인프라연구실)
  • Received : 2015.12.03
  • Accepted : 2016.01.07
  • Published : 2016.01.31

Abstract

This study presents the numerical results of soil-water characteristic curve for sandy soil by pore network model. The Jumunjin sand is subjected to the high resolution 3D X-ray computed tomographic imaging and its pore structure is constructed by the web of pore body and pore channel. The channel radius, essential to the computation of capillary pressure, is obtained based on the skeletonization and Euclidean Distance transform. The experimentally obtained soil-water characteristic curve corroborates the numerically estimated one. The pore channel radius defined by minimum radii of pore throat results in the slightly overestimation of air entry value, while the overall evolution of capillary pressure resides in the acceptable range. The relative permeability computed by a series of suggested models runs above that obtained by pore network model at high degree of saturation.

본 연구에서는 공극 네트워크 모델을 이용하여 사질토의 함수특성곡선을 수치해석적으로 획득하였다. 주문진표준사의 시편을 고해상도 3차원 X-ray CT 촬영하여 공극 영상을 획득하였고, 이를 공극방과 공극목으로 이루어진 관망으로 재구성하였으며 이 때 관의 반경은 공극목의 최소반경으로 정의하였다. 모세관압에 영향을 미치는 공극목의 반경은 세선화알고리즘과 유클리디언 거리변환을 통해 계산하였다. 수치해석적으로 얻은 함수특성곡선을 실험결과와 비교하였으며, 수치해석 결과는 실험결과에 비해 공기함입치가 과대평가 되었으나 전체 모세관압은 유사한 분포를 나타냈다. 또한 실험결과로부터 도출된 상대투수율은 높은 포화도에서 수치해석 결과에 비해 큰 값을 보였다.

Keywords

References

  1. Aker, E., K. MalOy, K. J., Hansen, A., and Batrouni G. G. (1998), "A Two-dimensional Network Simulator for Two-phase Flow in Porous Media", Transport in Porous Media, Vol.32, No.2, pp. 163-186. https://doi.org/10.1023/A:1006510106194
  2. Baldwin, C. A., Sederman, A. J., Mantle, M. D., Alexander, P., and Gladden, L. F. (1996), "Determination and Characterization of the Structure of a Pore Space from 3D Volume Images", Journal of Colloid and Interface Science, Vol.181, No.1, pp.79-92. https://doi.org/10.1006/jcis.1996.0358
  3. Blunt, M. J. (2001), "Flow in Porous Media-pore-network Models and Multiphase Flow", Current opinion in colloid & interface science, Vol.6, No.3, pp.197-207. https://doi.org/10.1016/S1359-0294(01)00084-X
  4. Blunt, M. J. and King, P. (1991), "Relative Permeabilities from Two- and Three-dimensional Pore-scale Network Modelling", Transport in Porous Media, Vol.6, No.4, pp.407-433. https://doi.org/10.1007/BF00136349
  5. Brooks, R. H. and Corey, A. T. (1964), "Hydraulic Properties of Porous Media".
  6. Bryant, S. and Blunt, M. J. (1992), "Prediction of Relative Permeability in Simple Porous Media", Physical Review A, Vol.46, No.4, 2004. https://doi.org/10.1103/PhysRevA.46.2004
  7. Corey, A. T. (1954), "The Interrelationship between Oil and Gas Permeabilities", Producers Monthly, Vol.19, No.1, pp.38-41.
  8. Dong, H. (2007), "Micro CT Imaging and Pore Network Extraction", PhD Thesis, Imperial College London.
  9. Dong, H. and Blunt, M. J. (2009) "Pore-network Extraction from Micro-computerized-tomography Images", Physical Review E, Vol.80, No.3, 036307. https://doi.org/10.1103/PhysRevE.80.036307
  10. Fredlund, M. D., Fredlund, D. G., and Wilson, G. W. (1997), "Prediction of the Soil-water Characteristic Curve from Grain-size Distribution and Volume-mass Properties", In Proc., 3rd Brazilian Symp. on Unsaturated Soils, Rio de Janeiro. Vol.1, pp.13-23.
  11. Van Genuchten, M. T. (1980), "A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils", Soil science society of America journal, Vol.44, No.5, pp.892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x
  12. Jang, J. and Santamarina, J. C. (2011), "Recoverable Gas from Hydrate-bearing Sediments: Pore Network Model Simulation and Macroscale Analyses", Journal of geophysical research: Solid Earth, Vol.116, B08202.
  13. Jang, J. and Santamarina, J. C. (2014), "Evolution of Gas Saturation and Relative Permeability during Gas Production from Hydratebearing Sediments: Gas Invasion vs. Gas Uucleation", Journal of Geophysical Research: Solid Earth, Vol.119, No.1, pp.116-126. https://doi.org/10.1002/2013JB010480
  14. Karpyn, Z. T. and Piri, M. (2007), "Prediction of Fluid Occupancy in Fractures Using Network Modeling and X-ray Microtomography. I: Data Conditioning and Model Description", Physical Review E, Vol.76, No.1, 016315. https://doi.org/10.1103/PhysRevE.76.016315
  15. Kim, D.H., Yang, H. J., Kim, K.Y., and Yun, T.S. (2015), "Experimental Investigation of Evaporation and Drainage in Wettable and Waterrepellent Sands", Sustainability, Vol.7, No.5, 5648-5663. https://doi.org/10.3390/su7055648
  16. Piri, M. and Karpyn, Z. T. (2007), "Prediction of Fluid Occupancy in Fractures Using Network Modeling and X-ray Microtomography. II: Results", Physical Review E, Vol.76, No.1, 016316. https://doi.org/10.1103/PhysRevE.76.016316
  17. Lee, T. C., Kashyap, R. L., and Chu, C. N. (1994), "Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms", CVGIP: Graphical Models and Image Processing, Vol.56, No.6, pp.462-478. https://doi.org/10.1006/cgip.1994.1042
  18. Li, K. and Horne, R. N. (2006), "Comparison of Methods to Calculate Relative Permeability from Capillary Pressure in Consolidated Water-wet Porous Media", Water resources research, Vol.42, No.6.
  19. Liang, Z., Ioannidis, M. A., and Chatzis, I. (2000), "Geometric and Topological Analysis of Three-dimensional Porous Media: Pore Space Partitioning based on Morphological Skeletonization", Journal of colloid and interface science, Vol.221, No.1, pp.13-24. https://doi.org/10.1006/jcis.1999.6559
  20. Oren, P. E. and Bakke, S. (2002), "Process based Reconstruction of Sandstones and Prediction of Transport Properties", Transport in Porous Media, Vol.46, No.2-3, pp.311-343. https://doi.org/10.1023/A:1015031122338
  21. Prodanovic, M., Lindquist, W. B., and Seright, R. S. (2006), "Porous Structure and Fluid Partitioning in Polyethylene Cores from 3D X-ray Microtomographic Imaging", Journal of Colloid and Interface Science, Vol.298, No.1, pp.282-297. https://doi.org/10.1016/j.jcis.2005.11.053
  22. Raoof, A., Nick, H. M., Hassanizadeh, S. M., and Spiers, C. J. (2013), "PoreFlow: A Complex Pore-network Model for Simulation of Reactive Transport in Variably Saturated Porous Media", Computers & Geosciences, Vol.61, pp.160-174. https://doi.org/10.1016/j.cageo.2013.08.005
  23. Silin, D. and Patzek, T. (2006), "Pore Space Morphology Analysis Using Maximal Inscribed Spheres", Physica A: Statistical Mechanics and its Applications, Vol.371, No.2, pp.336-360. https://doi.org/10.1016/j.physa.2006.04.048
  24. Valvatne, P. H. (2004), "Predictive Pore-scale Modelling of Multiphase Flow", PhD Thesis, Imperial College London.
  25. Yang, H. J. (2014), "Experimental Study on the Wettability of Synthesized Water-repellent Sand and Silty Soils", MS Thesis, Yonsei University.
  26. Zhao, H. Q., Macdonald, I. F., and Kwiecien, M. J. (1994), "Multiorientation Scanning: A Necessity in the Identification of Pore Necks in Porous Media by 3-D Computer Reconstruction from Serial Section Data", Journal of colloid and interface science, Vol. 162, No.2, pp.390-401. https://doi.org/10.1006/jcis.1994.1053

Cited by

  1. X-ray CT 이미지를 이용한 암석의 특성 평가 방안 vol.29, pp.6, 2016, https://doi.org/10.7474/tus.2019.29.6.542
  2. Stability Analysis of Soil Flow Protector and Design Method for Estimating Optimal Length vol.11, pp.16, 2021, https://doi.org/10.3390/app11167314