• Title/Summary/Keyword: smart catalyst

Search Result 21, Processing Time 0.03 seconds

Hydrogen Generation Characteristics of SMART Process with Inherent $CO_2/H_2$ Separation (CO$_2/H_2$ 원천분리 SMART 공정의 수소생산특성)

  • Ryu, Ho-Jung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.55-58
    • /
    • 2007
  • To check the feasibility of SMART (Steam Methane Advanced Reforming Technology)system, an experimental investigation was conducted. A fluidized bed reactor of diameter 0.052 m was operated cyclically up to the $10^{th}$ cycle, alternating between reforming and regeneration conditions. FCR-4 catalyst was used as the reforming catalyst and calcined limestone (domestic, from Danyang) was used as the $CO_2$ absorbent. Hydrogen concentration of 98.2% on a dry basis was reached at $650^{\circ}C$ for the first cycle. This value is much higher than $H_2$ concentration of 73.6% in the reformer of conventional SMR (steam methane reforming) system. However, the hydrogen concentration decreased because the $CO_2$ capture capacity decreased as the number of cycles increased.

  • PDF

Optimization of Cu/CeO2 Catalyst for Single Stage Water-Gas Shift Reaction: CeO2 Production Using Cerium Hydroxy Carbonate Precursor and Selection of Optimal Cu Loading (단일 수성가스 전이 반응용 Cu/CeO2 촉매 최적화: 수산화탄산세륨 전구체를 이용한 CeO2 제조 및 최적 Cu 담지량 선정)

  • HEO YU-SEUNG;JEONG, CHANG-HOON;PARK, MIN-JU;KIM, HAK-MIN;KANG, BOO MIN;JEONG, DAE-WOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • In this study, CeO2 support is synthesized from cerium hydroxy carbonate prepared using precipitation/digestion method using KOH and K2CO3 as the precipitants. The Cu was impregnated to CeO2 support with the different loading (Cu loading=10-40 wt. %). The prepared Cu/CeO2 catalysts were applied to a single stage water gas shift (WGS) reaction. Among the prepared catalysts, the 20Cu/CeO2 catalyst contained 20 wt.% of Cu showed the highest CO conversion (Xco=68% at 400℃). This result was mainly due to a large amount of active sites. In addition, the activity of the 20 Cu/CeO2 catalyst was maintained without being deactivated for 100 hours because of the strong interaction between Cu and CeO2. Therefore, it was confirmed that 20 Cu/CeO2 is a suitable catalyst for a single WGS reaction.

Hydrogen Generation Characteristics of SMART System with Inherent $CO_2/H_2$ Separation ($CO_2/H_2$ 원천분리 SMART 시스템의 수소생산특성)

  • Ryu, Ho-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.382-390
    • /
    • 2007
  • To check the feasibility of SMART(Steam Methane Advanced Reforming Technology) system, an experimental investigation was performed. A fluidized bed reactor of diameter 0.052m was operated cyclically up to 10th cycle, alternating between reforming and regeneration conditions. FCR-4 catalyst was used as the reforming catalyst and calcined limestone(domestic, from Danyang) was used as the $CO_2$ absorbent. Hydrogen concentration of 98.2% on a dry basis was reached at $650^{\circ}C$ for the first cycle. This value is much higher than $H_2$ concentration of 73.6% in the reformer of conventional SMR (steam methane reforming) condition. The hydrogen concentration decreased because the $CO_2$ capture capacity decreased as the number of cycles increased. However, the average hydrogen concentration at 10th cycle was 82.5% and this value is also higher than that of SMR. Based on these results, we could conclude that the SMART system can replace SMR system to generate pure hydrogen without HTS (high tempeature shift), LTS (low temperature shift) and $CO_2$ separation process.

A Study on Characteristics of NaBH4 Hydrolysis using Co/Al2O3 Nanopowder Catalyst (나노파우더형 Co/Al2O3 촉매를 활용한 NaBH4 가수분해반응 특성 연구)

  • YUN, SEONG MO;LEE, TAE HOON;OH, TAEK HYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.343-352
    • /
    • 2022
  • Co/Al2O3 nanopowder was used as a catalyst to investigate the effect of catalyst support, reduction temperature, sodium borohydride (NaBH4) concentration, sodium hydroxide (NaOH) concentration, and reaction temperature on the characteristics of NaBH4 hydrolysis. The Co/Al2O3 nanopowder showed a high catalytic activity among various catalysts. Catalyst reduction at 250℃ exhibited a relatively good activity. The activity decreased with an increase in the NaBH4 concentration. Conversely, the activity increased and then decreased with an increase in the NaOH concentration. Additionally, the activity increased with an increase in the reaction temperature. The value of apparent activation energy was 40.81 kJ/mol, which was lower than the other Co-based catalysts. Thus, Co/Al2O3 nanopowder catalyst can be widely used for NaBH4 hydrolysis owing to its superior catalytic activity.

Development of a Novel Process to produce Biodiesel and its use as fuel in CI Engine performance study

  • Mishra, Prasheet;Lakshmi, D.V.N.;Sahu, D.K.;Das, Ratnakar
    • International journal of advanced smart convergence
    • /
    • v.4 no.1
    • /
    • pp.154-161
    • /
    • 2015
  • A novel process has successfully been developed by overcoming major difficulties through the elimination of number of process steps involved in the Classical Transesterification reaction during the preparation of Fatty Acid Methyl/Ethyl Ester (FAME.FAEE) called biodiesel. The Classical process with cost intensive process steps such as the utilization of excess alcohol, needing downstream distillation for the recovery and reutilization of excess alcohol/cosolvent, unrecoverable homogenous catalyst which consumes vast quantity of fresh distilled water during the purification of the product and downstream waste water treatment before its safe disposal to the surface water body. The Novel Process FAME/FAEE is produced from any vegetable oil irrespective of edible or inedible variety using sonication energy. The novelty of the finding is the use of only theoretical quantity of alcohol along with a co-solvent and reduced quantity of homogeneous catalyst. Under this condition neither the homogeneous catalyst goes to the FAME layer nor is the distillation needed. The same ester also has been prepared in high pressure high temperature reactor without using catalyst at sub critical temperature. The quality of prepared biodiesel without involving any purification step meets the ASTM standards. Blended Biodiesel with Common Diesel Fuel (CDF) and FAME is prepared, characterized and used as fuel in the Kirloskar make CI Engines. The evaluation of the engine performance result of pure CDF, B05 biodiesel, B10 biodiesel of all types of biodiesel prepared by using the feedstock of Soybean (Glycine max) and Karanja (Pongamia pinnate) oil along with their mixed oil provides useful information such as brake power, brake thermal efficiency, brake specific fuel consumption, etc, and established it as ideal fuel for unmodified CI engine.

A study on a model of intercultural learning contents and methods

  • Jong Youl Hong
    • Smart Media Journal
    • /
    • v.13 no.4
    • /
    • pp.104-113
    • /
    • 2024
  • This study is a model study on the contents and methods of intercultural learning. Starting with a discussion of the intercultural learning model construct, it presents key contents important for intercultural learning and learning methods that can increase the effectiveness of intercultural learning. Also, we actually conducted the above learning program at the learning site and discussed the observations and results. It was a case study that allowed us to test the effectiveness of cultural intelligence theory, the latest theory that can improve intercultural competency. In addition, in order for the cultural intelligence theory to be effective in the learning process, it was found that the PBL method, which allows learners to solve problems on their own, rather than cramming education, is useful. Additionally, it was found that the ARCS model was also very effective in motivating and maintaining learners' continuous motivation. At this time, the instructor was also able to see that the effect increases when the role of catalyst becomes the main one.

The developments of heavy hydrocarbon reformer for SOFC

  • Bae, Jung-Myeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.2-58.2
    • /
    • 2012
  • Heavy hydrocarbon reforming is a core technology for "Dirty energy smart". Heavy hydrocarbons are components of fossil fuels, biomass, coke oven gas and etc. Heavy hydrocarbon reforming converts the fuels into $H_2$-rich syngas. And then $H_2$-rich syngas is used for the production of electricity, synthetic fuels and petrochemicals. Energy can be used efficiently and obtained from various sources by using $H_2$-rich syngas from heavy hydrocarbon reforming. Especially, the key point of "Dirty energy smart" is using "dirty fuel" which is wasted in an inefficient way. New energy conversion laboratory of KAIST has been researched diesel reforming for solid oxide fuel cell (SOFC) as a part of "Dirty energy smart". Diesel is heavy hydrocarbon fuels which has higher carbon number than natural gas, kerosene and gasoline. Diesel reforming has difficulties due to the evaporation of fuels and coke formation. Nevertheless, diesel reforming technology is directly applied to "Dirty fuel" because diesel has the similar chemical properties with "Dirty fuel". On the other hand, SOFC has advantages on high efficiency and wasted heat recovery. Nippon oil Co. of Japan recently commercializes 700We class SOFC system using city gas. Considering the market situation, the development of diesel reformer has a great ripple effect. SOFC system can be applied to auxiliary power unit and distributed power generation. In addition, "Dirty energy smart" can be realized by applying diesel reforming technology to "Dirty fuel". As well as material developments, multidirectional approaches are required to reform heavy hydrocarbon fuels and use $H_2$-rich gas in SOFC. Gd doped ceria (CGO, $Ce_{1-x}Gd_xO_{2-y}$) has been researched for not only electrolyte materials but also catalysts supports. In addition, catalysts infiltrated electrode over porous $La_{0.8}Sr_{0.2}Ga_{0.8}Mg_{0.2}O_3-{\delta}$ and catalyst deposition at three phase boundary are being investigated to improve the performance of SOFC. On the other hand, nozzle for diesel atomization and post-reforming for light-hydrocarbons removal are examples of solving material problems in multidirectional approaches. Likewise, multidirectional approaches are necessary to realize "Dirty energy smart" like reforming "Dirty fuel" for SOFC.

  • PDF

A Study on the Manufacturing and Properties of Hightech Easycare Wool (고감성 Easycare Wool의 제조 및 특성 연구)

  • Han Tae Sung;Park Jun Ho;Park Sang Woon;Jeon Byong Dae
    • Textile Coloration and Finishing
    • /
    • v.17 no.6 s.85
    • /
    • pp.51-59
    • /
    • 2005
  • To manufacture hightech easycare wool, there are several methods which use strong oxidising agent or the resin treatment, however, neither are environmentally friendly methods. Moreover it may deteriorate the handle. The aim of this study is to manufacture the hightech easycare wool using the modified Fenton method which can be formed by hydrogen peroxide and ferric sulfate and enzyme treatment. The method was pretreated by ferric sulfate on the wool surface and then the surface of wool scale was selectively removed by ferric ion catalyst. Subsequently the Enchiron which is one of the proteolytic enzymes was treated on the wool surface. The treated wool had the result of having optimum weight loss and excellent whiteness and good handle. Therefore implications of these results suggest that this method using the modified Fenton method and enzyme treatment may be one way of manufacturing the hightech easycare wool.

Design and Validation of a Fuel Cell System with a NaBH4 Hydrogen Generation System for Future Defense Unmanned Vehicles (미래 국방 무인 이동체를 위한 NaBH4 수소 발생 시스템 기반 연료전지 시스템 설계 및 검증)

  • SEONG MO YUN;MIN JAE KIM;CHAE MIN HWANG;TAE HOON LEE;SU SANG YU;TAEK HYUN OH
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.2
    • /
    • pp.152-161
    • /
    • 2024
  • In this study, a fuel cell system for future defense unmanned vehicles was designed and validated. A Co/Al2O3-Ni foam catalyst for NaBH4 hydrolysis was characterized using several analytical methods. A NaBH4 hydrogen generation system with the Co/Al2O3-Ni foam catalyst continuously generated hydrogen at elevated reaction temperatures. The fuel cell system with the NaBH4 hydrogen generation system was designed and tested. The performance of the fuel cell system was comparable to that of the fuel cell system using pure hydrogen. Therefore, the fuel cell system with the NaBH4 hydrogen generation system is a suitable power source for future defense unmanned vehicles owing to its easy refueling and simple system.

Carbon-Encapsulated Ni Catalysts for CO2 Methanation (탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응)

  • Kim, Hye Jeong;Kim, Seung Bo;Kim, Dong Hyun;Youn, Jae-Rang;Kim, Min-Jae;Jeon, Sang Goo;Lee, Gyoung-Ja;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.