DOI QR코드

DOI QR Code

A Study on Characteristics of NaBH4 Hydrolysis using Co/Al2O3 Nanopowder Catalyst

나노파우더형 Co/Al2O3 촉매를 활용한 NaBH4 가수분해반응 특성 연구

  • YUN, SEONG MO (Department of Mechanical Engineering, Changwon National University) ;
  • LEE, TAE HOON (Department of Smart Manufacturing Engineering, Changwon National University) ;
  • OH, TAEK HYUN (Department of Mechanical Engineering, Changwon National University)
  • 윤성모 (창원대학교 기계공학부) ;
  • 이태훈 (창원대학교 스마트제조융합협동과정) ;
  • 오택현 (창원대학교 기계공학부)
  • Received : 2022.07.25
  • Accepted : 2022.08.22
  • Published : 2022.08.30

Abstract

Co/Al2O3 nanopowder was used as a catalyst to investigate the effect of catalyst support, reduction temperature, sodium borohydride (NaBH4) concentration, sodium hydroxide (NaOH) concentration, and reaction temperature on the characteristics of NaBH4 hydrolysis. The Co/Al2O3 nanopowder showed a high catalytic activity among various catalysts. Catalyst reduction at 250℃ exhibited a relatively good activity. The activity decreased with an increase in the NaBH4 concentration. Conversely, the activity increased and then decreased with an increase in the NaOH concentration. Additionally, the activity increased with an increase in the reaction temperature. The value of apparent activation energy was 40.81 kJ/mol, which was lower than the other Co-based catalysts. Thus, Co/Al2O3 nanopowder catalyst can be widely used for NaBH4 hydrolysis owing to its superior catalytic activity.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. 2021R1F1A1046889)과 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원(No. 20214000000480, 청정가스복합화력발전 핵심요소기술 및 국산화 전문인재양성)을 받아 수행된 연구입니다.

References

  1. Ministry of Science and ICT, "Unmanned vehicle technology Roadmap", Ministry of Science and ICT, 2017. Retrieved from https://doc.msit.go.kr/SynapDocViewServer/viewer/doc.html?key=baa776faff8a4a50b4280bf59c53407a&convType=img&convLocale=ko_KR&contextPath=/SynapDocViewServer.
  2. J. Zhang, F. Lin, L. Yang, and H. Dong, "Highly dispersed Ru/Co catalyst with enhanced activity for catalyzing NaBH4 hydrolysis in alkaline solutions", Chinese Chem. Lett., Vol. 31, No. 9, 2020, pp. 2512-2515, doi: https://doi.org/10.1016/j.cclet.2020.03.072.
  3. Y. Liang, H. B. Dai, L. P. Ma, P. Wang, and H. M. Cheng, "Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst", Int. J. Hydrogen Energy, Vol. 35, No. 7, 2010, pp. 3023-3028, doi: https://doi.org/10.1016/j.ijhydene.2009.07.008.
  4. H. Zhang, L. Zhang, I. A. Rodriguez-Perez, W. Miao, K. Chen, W. Wang, Y. Li, and S. Han, "Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis", Appl. Surf. Sci., Vol. 540, No. 1, 2021, pp. 148296, doi: https://doi.org/10.1016/j.apsusc.2020.148296.
  5. Y. Kojima, K. I. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, and H. Hayashi, "Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide", Int. J. Hydrogen Energy, Vol. 27, No. 10, 2002, pp. 1029-1034, doi: https://doi.org/10.1016/S0360-3199(02)00014-9.
  6. A. Uzundurukan and Y. Devrim, "Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: a kinetic study", Int. J. Hydrogen Energy, Vol. 44, No. 33, 2019, pp. 17586-17594, doi: https://doi.org/10.1016/j.ijhydene.2019.04.188.
  7. V. G. Minkina, S. I. Shabunya, V. I. Kalinin, and A. Smirnova, "Hydrogen generation from sodium borohydride solutions for stationary applications", Int. J. Hydrogen Energy, Vol. 41, No. 22, 2016, pp. 9227-9233, doi: https://doi.org/10.1016/j.ijhydene.2016.03.063.
  8. T. H. Oh and S. Kwon, "Effect of manufacturing conditions on properties of electroless deposited Co-P/Ni foam catalyst for hydrolysis of sodium borohydride solution", Int. J. Hydrogen Energy, Vol. 37, No. 21, 2012, pp. 15925-15937, doi: https://doi.org/10.1016/j.ijhydene.2012.08.053.
  9. D. Park and T. G. Kim, "Hydrogen generation from NaBH4 hydrolysis on Co-Ni-P-B/Ni foam catalyst", Trans Korean Hydrogen New Energy Soc, Vol. 21, No. 5, 2010, pp. 383-389. Retrieved from https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001492984.
  10. D. H. Kim, S. Jo, J. H. Kwon, S. Lee, and K. S. Eom, "Effect of iron content on the hydrogen production kinetics of electroless-deposited Co-Ni-Fe-P alloy catalysts from the hydrolysis of sodium borohydride, and a study of its feasibility in a new hydrolysis using magnesium and calcium borohydrides", Int. J. Hydrogen Energy, Vol. 44, No. 29, 2019, pp. 15228-15238, doi: https://doi.org/10.1016/j.ijhydene.2019.04.169.
  11. K. S. Eom, K. Cho, and H. Kwon, "Effects of electroless deposition conditions on microstructures of cobaltphosphorous catalysts and their hydrogen generation properties in alkaline sodium borohydride solution", J. Power Sources, Vol. 180, No. 1, 2008, pp. 484-490, doi: https://doi.org/10.1016/j.jpowsour.2008.01.095.
  12. L. Wang, Z. Li, X. Liu, P. Zhang, and G. Xie, "Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co-W-P supported on γ-Al2O3", Int. J. Hydrogen Energy, Vol. 40, No. 25, 2015, pp. 7965-7973, doi: https://doi.org/10.1016/j.ijhydene.2015.04.110.
  13. R. Li, F. Zhang, J. Zhang, and H. Dong, "Catalytic hydrolysis of NaBH4 over titanate nanotube supported Co for hydrogen production", Int. J. Hydrogen Energy, Vol. 47, No. 8, 2022, pp. 5260-5268, doi: https://doi.org/10.1016/j.ijhydene.2021.11.143.
  14. F. Akti, "Hydrogen generation from hydrolysis of sodium borohydride by silica xerogel supported cobalt catalysts: positive roles of amine modification and calcination treatment", Fuel, Vol. 303, 2021, pp. 121326, doi: https://doi.org/10.1016/j.fuel.2021.121326.
  15. C. H. Liu, B. H. Chen, C. L. Hsueh, J. R. Ku, F. Tsau, and K. J. Hwang, "Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH4 solution", Appl. Catal. B: Environ., Vol. 91, No. 1-2, 2009, pp. 368-379, doi: https://doi.org/10.1016/j.apcatb.2009.06.003.
  16. N. Patel, R. Fernandes, and A. Miotello, "Hydrogen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst: a kinetic study", J. Power Sources, Vol. 188, No. 2, 2009, pp. 411-420, doi: https://doi.org/10.1016/j.jpowsour.2008.11.121.
  17. D. R. Fertal, M. Monai, L. Proano, M. P. Bukhovko, J. Park, Y. Ding, B. M. Weckhuysen, and A. C. Banerjee, "Calcination temperature effects on Pd/alumina catalysts: Particle size, surface species and activity in methane combustion", Catal. Today, Vol. 382, 2021, pp. 120-129, doi: https://doi.org/10.1016/j.cattod.2021.08.005.
  18. Z. P. Li, B. H. Liu, K. Arai, K. Asaba, and S. Suda, "Evaluation of alkaline borohydride solutions as the fuel for fuel cell", J. Power Sources, Vol. 126, No. 1-2, 2004, pp. 28-33, doi: https://doi.org/10.1016/j.jpowsour.2003.08.017.
  19. T. H. Oh and S. Kwon, "Effect of Additives for Prevention of NaBO2 Precipitation on Hydrogen Generation Properties of NaBH4 Hydrolysis", Trans Korean Hydrogen New Energy Soc, Vol. 24, No. 1, pp. 1-11, doi: http://dx.doi.org/10.7316/KHNES.2013.24.1.001.
  20. M. M. Kreevoy and R. W. Jacobson, "The rate of decomposition of NaBH4 in basic aqueous solutions", Ventron Alembic, Vol. 15, 1979, pp. 2-3.