Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.4.343

A Study on Characteristics of NaBH4 Hydrolysis using Co/Al2O3 Nanopowder Catalyst  

YUN, SEONG MO (Department of Mechanical Engineering, Changwon National University)
LEE, TAE HOON (Department of Smart Manufacturing Engineering, Changwon National University)
OH, TAEK HYUN (Department of Mechanical Engineering, Changwon National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.4, 2022 , pp. 343-352 More about this Journal
Abstract
Co/Al2O3 nanopowder was used as a catalyst to investigate the effect of catalyst support, reduction temperature, sodium borohydride (NaBH4) concentration, sodium hydroxide (NaOH) concentration, and reaction temperature on the characteristics of NaBH4 hydrolysis. The Co/Al2O3 nanopowder showed a high catalytic activity among various catalysts. Catalyst reduction at 250℃ exhibited a relatively good activity. The activity decreased with an increase in the NaBH4 concentration. Conversely, the activity increased and then decreased with an increase in the NaOH concentration. Additionally, the activity increased with an increase in the reaction temperature. The value of apparent activation energy was 40.81 kJ/mol, which was lower than the other Co-based catalysts. Thus, Co/Al2O3 nanopowder catalyst can be widely used for NaBH4 hydrolysis owing to its superior catalytic activity.
Keywords
Sodium borohydride; Catalyst; Catalyst support; Reduction; Fuel composition; Apparent activation energy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Li, F. Zhang, J. Zhang, and H. Dong, "Catalytic hydrolysis of NaBH4 over titanate nanotube supported Co for hydrogen production", Int. J. Hydrogen Energy, Vol. 47, No. 8, 2022, pp. 5260-5268, doi: https://doi.org/10.1016/j.ijhydene.2021.11.143.   DOI
2 C. H. Liu, B. H. Chen, C. L. Hsueh, J. R. Ku, F. Tsau, and K. J. Hwang, "Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH4 solution", Appl. Catal. B: Environ., Vol. 91, No. 1-2, 2009, pp. 368-379, doi: https://doi.org/10.1016/j.apcatb.2009.06.003.   DOI
3 D. H. Kim, S. Jo, J. H. Kwon, S. Lee, and K. S. Eom, "Effect of iron content on the hydrogen production kinetics of electroless-deposited Co-Ni-Fe-P alloy catalysts from the hydrolysis of sodium borohydride, and a study of its feasibility in a new hydrolysis using magnesium and calcium borohydrides", Int. J. Hydrogen Energy, Vol. 44, No. 29, 2019, pp. 15228-15238, doi: https://doi.org/10.1016/j.ijhydene.2019.04.169.   DOI
4 L. Wang, Z. Li, X. Liu, P. Zhang, and G. Xie, "Hydrogen generation from alkaline NaBH4 solution using electroless-deposited Co-W-P supported on γ-Al2O3", Int. J. Hydrogen Energy, Vol. 40, No. 25, 2015, pp. 7965-7973, doi: https://doi.org/10.1016/j.ijhydene.2015.04.110.   DOI
5 Z. P. Li, B. H. Liu, K. Arai, K. Asaba, and S. Suda, "Evaluation of alkaline borohydride solutions as the fuel for fuel cell", J. Power Sources, Vol. 126, No. 1-2, 2004, pp. 28-33, doi: https://doi.org/10.1016/j.jpowsour.2003.08.017.   DOI
6 T. H. Oh and S. Kwon, "Effect of Additives for Prevention of NaBO2 Precipitation on Hydrogen Generation Properties of NaBH4 Hydrolysis", Trans Korean Hydrogen New Energy Soc, Vol. 24, No. 1, pp. 1-11, doi: http://dx.doi.org/10.7316/KHNES.2013.24.1.001.   DOI
7 Y. Liang, H. B. Dai, L. P. Ma, P. Wang, and H. M. Cheng, "Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst", Int. J. Hydrogen Energy, Vol. 35, No. 7, 2010, pp. 3023-3028, doi: https://doi.org/10.1016/j.ijhydene.2009.07.008.   DOI
8 D. Park and T. G. Kim, "Hydrogen generation from NaBH4 hydrolysis on Co-Ni-P-B/Ni foam catalyst", Trans Korean Hydrogen New Energy Soc, Vol. 21, No. 5, 2010, pp. 383-389. Retrieved from https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART001492984.
9 K. S. Eom, K. Cho, and H. Kwon, "Effects of electroless deposition conditions on microstructures of cobaltphosphorous catalysts and their hydrogen generation properties in alkaline sodium borohydride solution", J. Power Sources, Vol. 180, No. 1, 2008, pp. 484-490, doi: https://doi.org/10.1016/j.jpowsour.2008.01.095.   DOI
10 N. Patel, R. Fernandes, and A. Miotello, "Hydrogen generation by hydrolysis of NaBH4 with efficient Co-P-B catalyst: a kinetic study", J. Power Sources, Vol. 188, No. 2, 2009, pp. 411-420, doi: https://doi.org/10.1016/j.jpowsour.2008.11.121.   DOI
11 A. Uzundurukan and Y. Devrim, "Hydrogen generation from sodium borohydride hydrolysis by multi-walled carbon nanotube supported platinum catalyst: a kinetic study", Int. J. Hydrogen Energy, Vol. 44, No. 33, 2019, pp. 17586-17594, doi: https://doi.org/10.1016/j.ijhydene.2019.04.188.   DOI
12 V. G. Minkina, S. I. Shabunya, V. I. Kalinin, and A. Smirnova, "Hydrogen generation from sodium borohydride solutions for stationary applications", Int. J. Hydrogen Energy, Vol. 41, No. 22, 2016, pp. 9227-9233, doi: https://doi.org/10.1016/j.ijhydene.2016.03.063.   DOI
13 Ministry of Science and ICT, "Unmanned vehicle technology Roadmap", Ministry of Science and ICT, 2017. Retrieved from https://doc.msit.go.kr/SynapDocViewServer/viewer/doc.html?key=baa776faff8a4a50b4280bf59c53407a&convType=img&convLocale=ko_KR&contextPath=/SynapDocViewServer.
14 H. Zhang, L. Zhang, I. A. Rodriguez-Perez, W. Miao, K. Chen, W. Wang, Y. Li, and S. Han, "Carbon nanospheres supported bimetallic Pt-Co as an efficient catalyst for NaBH4 hydrolysis", Appl. Surf. Sci., Vol. 540, No. 1, 2021, pp. 148296, doi: https://doi.org/10.1016/j.apsusc.2020.148296.   DOI
15 F. Akti, "Hydrogen generation from hydrolysis of sodium borohydride by silica xerogel supported cobalt catalysts: positive roles of amine modification and calcination treatment", Fuel, Vol. 303, 2021, pp. 121326, doi: https://doi.org/10.1016/j.fuel.2021.121326.   DOI
16 D. R. Fertal, M. Monai, L. Proano, M. P. Bukhovko, J. Park, Y. Ding, B. M. Weckhuysen, and A. C. Banerjee, "Calcination temperature effects on Pd/alumina catalysts: Particle size, surface species and activity in methane combustion", Catal. Today, Vol. 382, 2021, pp. 120-129, doi: https://doi.org/10.1016/j.cattod.2021.08.005.   DOI
17 M. M. Kreevoy and R. W. Jacobson, "The rate of decomposition of NaBH4 in basic aqueous solutions", Ventron Alembic, Vol. 15, 1979, pp. 2-3.
18 T. H. Oh and S. Kwon, "Effect of manufacturing conditions on properties of electroless deposited Co-P/Ni foam catalyst for hydrolysis of sodium borohydride solution", Int. J. Hydrogen Energy, Vol. 37, No. 21, 2012, pp. 15925-15937, doi: https://doi.org/10.1016/j.ijhydene.2012.08.053.   DOI
19 J. Zhang, F. Lin, L. Yang, and H. Dong, "Highly dispersed Ru/Co catalyst with enhanced activity for catalyzing NaBH4 hydrolysis in alkaline solutions", Chinese Chem. Lett., Vol. 31, No. 9, 2020, pp. 2512-2515, doi: https://doi.org/10.1016/j.cclet.2020.03.072.   DOI
20 Y. Kojima, K. I. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai, and H. Hayashi, "Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide", Int. J. Hydrogen Energy, Vol. 27, No. 10, 2002, pp. 1029-1034, doi: https://doi.org/10.1016/S0360-3199(02)00014-9.   DOI