Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.6.455

Optimization of Cu/CeO2 Catalyst for Single Stage Water-Gas Shift Reaction: CeO2 Production Using Cerium Hydroxy Carbonate Precursor and Selection of Optimal Cu Loading  

HEO YU-SEUNG (Department of Smart Environmental Energy Engineering, Changwon National University)
JEONG, CHANG-HOON (Department of Smart Environmental Energy Engineering, Changwon National University)
PARK, MIN-JU (Department of Smart Environmental Energy Engineering, Changwon National University)
KIM, HAK-MIN (Industrial Technology Research Center, Changwon National University)
KANG, BOO MIN (Department of Environmental Engineering, Changwon National University)
JEONG, DAE-WOON (Department of Smart Environmental Energy Engineering, Changwon National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.6, 2021 , pp. 455-463 More about this Journal
Abstract
In this study, CeO2 support is synthesized from cerium hydroxy carbonate prepared using precipitation/digestion method using KOH and K2CO3 as the precipitants. The Cu was impregnated to CeO2 support with the different loading (Cu loading=10-40 wt. %). The prepared Cu/CeO2 catalysts were applied to a single stage water gas shift (WGS) reaction. Among the prepared catalysts, the 20Cu/CeO2 catalyst contained 20 wt.% of Cu showed the highest CO conversion (Xco=68% at 400℃). This result was mainly due to a large amount of active sites. In addition, the activity of the 20 Cu/CeO2 catalyst was maintained without being deactivated for 100 hours because of the strong interaction between Cu and CeO2. Therefore, it was confirmed that 20 Cu/CeO2 is a suitable catalyst for a single WGS reaction.
Keywords
Water gas shift; Cerium hydroxy carbonate; Cu loading; Active sites; Interaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Pastor-Perez, S. Gu, A. Sepulveda-Escribano, and T. R. Reina, "Bimetallic Cu-Ni catalysts for the WGS reaction - Cooperative or uncooperative effect", Int. J. Hydrogen Energy, Vol. 44, No. 8, 2019, pp. 4011-4019. doi: https://doi.org/10.1016/j.ijhydene.2018.12.127.   DOI
2 T. Tabakova, L. Ilieva, I. Ivanov, R. Zanella, J. W. Sobczak, W. Lisowski, Z. Kaszkur, and D. Andreeva, "Influence of the preparation method and dopants nature on the WGS activity of gold catalysts supported on doped by transition metals ceria", Appl. Catal. B Environ., Vol. 136-137, 2013, pp. 70-80, doi: https://doi.org/10.1016/j.apcatb.2013.01.050.   DOI
3 C. J. Shih, Y. J. Chen, and M. H. Hon, "Synthesis and crystal kinetics of cerium oxide nanocrystallites prepared by co-precipitation process", Mater. Chem. Phys., Vol. 121, No. 1-2, 2010, pp. 99-102, doi: https://doi.org/10.1016/j.matchemphys.2010.01.001.   DOI
4 J. B. Ko, C. M. Bae, Y. S. Jung, and D. H. Kim, "Cu-ZrO2 catalysts for water-gas-shift reaction at low temperatures", Catal. Letters, Vol. 105, 2005, pp. 157-161, doi: https://doi.org/10.1007/s10562-005-8685-6.   DOI
5 C. H. Jeong, H. J. Byeon, W. J. Jang, K. W. Jeon, and D. W. Jeong, "The optimization of Nb loading amount over Cu-Nb-CeO2 catalysts for hydrogen production via the low-temperature water gas shift reaction", Int. J. Hydrogen Energy, Vol. 45, No 6, 2020, pp. 9648-9657, doi: https://doi.org/10.1016/j.ijhydene.2020.01.198.   DOI
6 S. Y. Yoo, H. M. Kim, B. J. Kim, W. J. Jang, and H. S. Roh, "The effect of La2O3 loading on the performance of Ni-La2O3-Ce0.8Zr0.2O2 catalysts for steam reforming of methane", Trans Korean Hydrogen New Energy Soc, Vol. 29, No. 5, 2018, pp. 2-4, doi: https://doi.org/10.7316/KHNES.2018.29.5.419.   DOI
7 K. Rubin, A. Pohar, V. D. B. C. Dasireddy, and B. Likozar, "Synthesis, characterization and activity of CuZnGaOx catalysts for the water-gas shift (WGS) reaction for H2 production and CO removal after reforming", Fuel Process. Technol., Vol. 169, 2018, pp. 217-225, doi: https://doi.org/10.1016/j.fuproc.2017.10.008.   DOI
8 L. P. C. Silva, M. M. Freitas, L. E. Terra, A. C. S. L. S. Coutinho, and F. B. Passos, "Preparation of CuO/ZnO/Nb2O5 catalyst for the water-gas shift reaction", Catal Today, Vol. 344, 2020, pp. 59-65, doi: https://doi.org/10.1016/j.cattod.2018.10.028.   DOI
9 Y. J. Gu, J. H. Kim, W. J. Jang, and D. W. Jeong, "A comparison of Cu/CeO2 catalysts prepared via different precipitants/digestion methods for single stage water gas shift reactions", Catal. Today, 2020, doi: https://doi.org/10.1016/j.cattod.2020.06.067.   DOI
10 V. Palma, D. Pisano, M. Martino, A. Ricca, and P. Ciambelli, "Comparative studies of low temperature water gas shift reaction over platinum based catalysts", Chem. Eng. Trans., Vol. 39, 2014, pp. 31-36, doi: https://doi.org/10.3303/CET1439006.   DOI
11 A. Alijani and A. Irankhah, "Medium-temperature shift catalysts for hydrogen purification in a single-stage reactor", Chem. Eng. Technol., Vol. 36, N0. 2, 2013, pp. 209-219, doi: https://doi.org/10.1002/ceat.201200151.   DOI
12 X. Zhu, M. Shen, L. L. Lobban, and R. G. Mallinson, "Structural effects of Na promotion for high water gas shift activity on Pt-Na/TiO2", J. Catal., Vol. 278, No. 1, 2011, pp. 123-132, doi: https://doi.org/10.1016/j.jcat.2010.11.023.   DOI
13 H. M. Kim, K. W. Jeon, H. S. Na, W. J. Jang, and D. W. Jeong, "The effect of Cu loading on the performance of Cu-Ce0.8Zr0.2O2 catalysts for single stage water gas shift reaction", Trans Korean Hydrogen New Energy Soc, Vol. 28, No. 4, 2017, pp. 345-351, doi: https://doi.org/10.7316/KHNES.2017.28.4.345.   DOI
14 Z. Y. Pu, J. Q. Lu, M. F. Luo, and Y. L. Xie, "Study of oxygen vacancies in Ce0.9Pr0.1O2-δ solid solution by in situ X-ray diffraction and in situ raman spectroscopy", J. Phys. Chem. C, Vol. 111, No. 50, 2007, pp. 18695-18702, doi: https://doi.org/10.1021/jp0759776.   DOI
15 K. R. Hwang, S. K. Ihm, S. C. Park, and J. S. Park, "Pt/ZrO2 catalyst for a single-stage water-gas shift reaction: Ti addition effect", Int. J. Hydrogen Energy., Vol. 38, No. 14, 2013, pp. 6044-6051, doi: https://doi.org/10.1016/j.ijhydene.2013.01.101.   DOI
16 Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, "Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts", Science, Vol. 301, No. 5635, 2003, pp. 935-938, doi: https://doi.org/10.1126/science.1085721.   DOI
17 R. Farra, M. Garcia-Melchor, M. Eichelbaum, M. Hashagen, W. Frandsen, J. Allan, F. Girgsdies, L. Szentmiklosi, N. Lopez, and D. Teschner, "Promoted ceria: a structural, catalytic, and computational study", ACS Catal., Vol. 3, No. 10, 2013, pp. 2256-2268, doi: https://doi.org/10.1021/cs4005002.   DOI
18 F. Cavani, F. Trifiro, and A. Vaccari, "Hydrotalcite-type anionic clays: preparation, properties and applications", Catal. Today, Vol. 11, No. 2, 1991, pp. 173-301, doi: https://doi.org/10.1016/0920-5861(91)80068-K.   DOI
19 Z. Minghui and I. E. Wachs, "Iron-based catalysts for the high-temperature water-gas shift (HT-WGS) reaction: a review", ACS Catalysis, Vol. 6, 2016, pp. 722-732, doi: https://doi.org/10.1021/acscatal.5b02594.   DOI
20 H. Guan, J. Lin, B. Qiao, S. Miao, A. Q. Wang, X. Wang, and T. Zhang, "Enhanced performance of Rh1/TiO2 catalyst without methanation in water-gas shift reaction", AIChE Journal, Vol. 63, No. 6, 2017, pp. 2081-2088, doi: https://doi.org/10.1002/aic.15585.   DOI
21 J. O. Shim, H. S. Na, S. Y. Ahn, W. J. Jang, H. S. Roh, "An optimization of aging time for low-temperature water-gas shift over Cu-Zn-Al catalyst", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 2, 2019, pp. 103-110, doi: https://doi.org/10.7316/KHNES.2019.30.2.103.   DOI
22 M. J. Park, H. M. Kim, Y. J. Gu, C. H. Jeong, B. M. Kang, S. W. Ha, and D. W. Jeong, "A study on fostering plan for the hydrogen industry in Changwon City", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 6, 2020, pp. 509-521, doi: https://doi.org/10.7316/KHNES.2020.31.6.509.   DOI
23 J. Kim, S. H. Kim, and J. H. Kim, "Pressure retarded osmosis process: current status and future", J. Korean Soc. Environ. Eng., Vol. 36, No. 11. 2014, pp. 791-802, doi: https://doi.org/10.4491/ksee.2014.36.11.791.   DOI
24 D. W. Jeong, H. S. Potdar, and H. S. Roh, "Comparative study on nano-sized 1 wt% Pt/Ce0.8Zr0.2O2 and 1 wt% Pt/Ce0.2Zr0.8O2 catalysts for a single stage water gas shift reaction", Catal. Letters, Vol. 142, 2012, pp. 439-444, doi: https://doi.org/10.1007/s10562-012-0786-4.   DOI
25 F. Johnsson, J. Kjarstad, and J. Rootzen, "The threat to climate change mitigation posed by the abundance of fossil fuels", Clim. Policy, Vol. 19, No. 2, 2019, pp. 258-274, doi: https://doi.org/10.1080/14693062.2018.1483885.   DOI
26 J. W. Choi, J. Y. Lee, B. Lee, and T. Kim, "Exploring the knowledge structure of fuel cell electric vehicle in national R&D projects for the hydrogen economy", Journal of the Korea Contents Association, Vol. 21, No. 6, 2021, pp. 306-317, doi: https://doi.org/10.5392/JKCA.2021.21.06.306.   DOI
27 H. Lee, Y. Woo, and M. J. Lee, "The needs for R&D of ammonia combustion technology for carbon neutrality - part II R&D trends and technical feasibility analysis", J. Korean Soc. Combust., Vol. 26, 2021, pp. 84-106, doi: https://doi.org/10.15231/jksc.2021.26.1.084.   DOI
28 J. Chi and H. Yu, "Water electrolysis based on renewable energy for hydrogen production", Chinese J. Catal., Vol. 39, No. 3, 2018, pp. 390-394, doi: https://doi.org/10.1016/S1872-2067(17)62949-8.   DOI
29 H. S. Na, D. W. Jeong, W. J. Jang, J. O. Shim, and H. S. Roh, "The effect of preparation method on Fe/Al/Cu oxide-based catalyst performance for high temperature water gas shift reaction using simulated waste-derived synthesis gas", Int. J. Hydrogen Energy, Vol. 40, No. 36, 2015, pp. 12268-12274, doi: https://doi.org/10.1016/j.ijhydene.2015.07.060.   DOI
30 M. Byun, B. Lee, H. Lee, S. Jung, H. Ji, and H. Lim, "Techno-economic and environmental assessment of methanol steam reforming for H2 production at various scales", Int. J. Hydrogen Energy, Vol. 45, No. 46, 2019, pp. 24146-24158, doi: https://doi.org/10.1016/j.ijhydene.2020.06.097.   DOI
31 S. M. Lee, T. W. Kim, H. S. Lee, J. H. Lee, and S. G. Kang, "Statistical optimization of medium for formate-driven bio-hydrogen production by the hyperthermophilic archaeon, thermococus onnurineus", Ocean Polar Res, Vol. 39, No. 4, 2017, pp. 269-277, doi: https://doi.org/10.4217/OPR.2017.39.4.269.   DOI
32 S. Ryi, J. Han, C. Kim, H. Lim, and H. Jung, "Technical trends of hydrogem production", Clean Technol, Vol. 23, No. 2, 2017, pp. 121-132, doi: https://doi.org/10.7464/ksct.2017.23.2.121.   DOI
33 Y. Ju, H. T. Oh, J. C. Lee, and C. H. Lee, "Performance and dynamic behavior of sorption-enhanced water-gas shift reaction in a fluidized bed reactor for H2 production and CO2 capture", Chem. Eng. J., Vol. 410, 2021, pp. 127414, doi: https://doi.org/10.1016/j.cej.2020.127414.   DOI
34 V. Agarwal, S. Patel, and K. K. Pant,"H2 production by steam reforming of methanol over Cu/ZnO/Al2O3 catalysts: Transient deactivation kinetics modeling", Appl. Catal. A Gen., Vol. 279, No. 1-2, 2005, pp. 155-164, doi: https://doi.org/10.1016/j.apcata.2004.10.026.   DOI
35 H. B. Im, S. J. Kwon, C. K. Byun, H. S. Ahn, K. Y. Koo, W. L. Yoon, and K. B. Yi, "Effect of support geometry on catalytic activity of Pt/CeO2 nanorods in water gas shift reaction", Trans Korean Hydrog New Energy Soc, Vol. 25, No. 6, 2014, pp. 577-585, doi: https://doi.org/10.7316/khnes.2014.25.6.577.   DOI
36 D. W. Jeong, H. S. Na, J. O. Shim, W. J. Jang, H. S. Roh, U. H. Jung, and W. L. Yoon, "Hydrogen production from low temperature WGS reaction on co-precipitated Cu-CeO2 catalysts: An optimization of Cu loading", Int. J. Hydrogen Energy, Vol. 39, No. 17, 2014, 9135-9142, doi: https://doi.org/10.1016/j.ijhydene.2014.04.005.   DOI
37 D. W. Jeong, H. S. Potdar, K .S. Kim, and H. S. Roh, "The effect of sodium in activity enhancement of nano-sized Pt/CeO2 catalyst for water gas shift reaction at low temperature", Bull. Korean Chem. Soc., Vol. 32, No. 10, 2011, pp. 3557-3558, doi: https://doi.org/10.5012/bkcs.2011.32.10.3557.   DOI
38 J. H. Park, J. H. Baek, G. H. Jo, H. U. Rasheed, and K. B. Yi, "Catalytic characteristic of water-treated Cu/ZnO/MgO/Al2O3 catalyst for LT-WGS reaction", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 2, 2019, pp. 95-10, doi: https://doi.org/10.7316/KHNES.2019.30.2.95.   DOI
39 X. Zheng, X. Zhang, X. Wang, S. Wang, and S. Wu, "Preparation and characterization of CuO/CeO2 catalysts and their applications in low-temperature CO oxidation", Appl. Catal. A Gen., Vol. 295, No. 2, 2005, pp. 142-149, doi: https://doi.org/10.1016/j.apcata.2005.07.048.   DOI
40 M. Grilc and B. Likozar. "Levulinic acid hydrodeoxygenation, decarboxylation and oligmerization over NiMo/Al2O3 catalyst to bio-based value-added chemicals: modelling of mass transfer, thermodynamics and micro-kinetics", Chem. Eng. J., Vol. 330, 2017, pp. 383-397, doi: https://doi.org/10.1016/j.cej.2017.07.145.   DOI
41 Y. H. Lee, H. M. Kim, C. H. Jeong, and D. W. Jeong, "Effects of precipitants on the catalytic performance of Cu/CeO2 catalysts for the water-gas shift reaction", Catalysis Science & Technology, Vol. 11, 2021, pp. 6380-6389, doi: https://doi.org/10.1039/d1cy00964h.   DOI
42 A. Lamacz, K. Matus, B. Liszka, J. Silvestre-Albero, M. Lafjah, T. Dintzer, and I. Janowska, "The impact of synthesis method of CNT supported CeZrO2 and Ni-CeZrO2 on catalytic activity in WGS reaction", Catal. Today, Vol. 301, 2018, pp. 172-182, doi: https://doi.org/10.1016/j.cattod.2017.03.035.   DOI
43 W. J. Jang, H. S. Roh, and D. W. Jeong, "An important factor for the water gas shift reaction activity of cu-loaded cubic Ce0.8Zr0.2O2 catalysts", Environ. Eng. Res., Vol. 23, No. 3, 2018, pp. 339-344, doi: https://doi.org/10.4491/eer.2018.041.   DOI
44 M. Shen, L. Lv, J. Wang, J. Zhu, Y. Huang, and J. Wang, "Study of Pt dispersion on Ce based supports and the influence on the CO oxidation reaction", Chem. Eng. J., Vol. 255, 2014, pp. 40-48. doi: https://doi.org/10.1016/j.cej.2014.06.058.   DOI
45 L. Qi, Q. Yu, Y. Dai, C. Tang, L. Liu, H. Zhang, F. Gao, L. Dong, and Y. Chen, "Influence of cerium precursors on the structure and reducibility of mesoporous CuO-CeO2 catalysts for CO oxidation", Appl. Catal. B Environ., Vol. 119-120, 2012, pp. 308-320, doi: https://doi.org/10.1016/j.apcatb.2012.02.029.   DOI
46 C. Perego and P. Villa, "Catalyst preparation methods", Catal. Today, Vol. 34, No. 3-4, 1997, pp. 281-305, doi: https://doi.org/10.1016/S0920-5861(96)00055-7.   DOI
47 H. S. Roh, D. W. Jeong, K. S. Kim, I. H. Eum, K. Y. Koo, and W. L. Yoon, "Single stage water-gas shift reaction over supported Pt catalysts", Catal. Letters, Vol. 141, 2011, pp. 95-99, doi: https://doi.org/10.1007/s10562-010-0480-3.   DOI
48 Y. Davoodbeygi and A. Irankhah, "Catalytic characteristics of CexCu1-xO1.9 catalysts formed by solid state method for MTS and OMTS reactions", Int. J. Hydrogen Energy, Vol. 44, No. 31, 2019, pp. 16443-16451, doi: https://doi.org/10.1016/j.ijhydene.2019.04.244.   DOI
49 V. Palma and M. Martino, "Pt-Re based catalysts for the realization of a single stage water gas shift process", Chem. Eng. Trans., Vol. 57, 2017, pp. 1657-1662, doi: https://doi.org/10.3303/CET1757277.   DOI
50 X. Zhu, T. Hoang, L. L. Lobban, and R. G. Mallinson, "Significant improvement in activity and stability of Pt/TiO2 catalyst for water gas shift reaction via controlling the amount of Na addition", Catal. Letters, Vol. 129, 2009, pp. 135-141, doi: https://doi.org/10.1007/s10562-008-9799-4.   DOI