• Title/Summary/Keyword: singular points

Search Result 142, Processing Time 0.023 seconds

An Efficient Fingerprint Classification using Gabor Filter (Gabor 필터를 이용한 효율적인 지문분류)

  • Shim, Hyun-Bo;Park, Young-Bae
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.29-34
    • /
    • 2002
  • Fingerprint recognition technology was studied by classification and matching. In general, there are five different classifications left loop, right loop, whore, arch, and tented-arch. These classifications are used to determine which class an individual's fingerprint belong to, thereby identifying the individual's fingerprint pattern. The result of this classification, which is sent to the large fingerprint database as an index, helps reduce the matching time and enhance the accuracy of fingerprint matching. The existing fingerprint classification method relies on the number and location of cores and delta points called singular points. The drawback of this method is the lack of accuracy stemming from the classification difficulty involving unclear and/or partially-erased fingerprints. The current paper presents an efficient classification method to rectify the problem associated with identifying Singular points from unclear fingerprints. This method, which is based on Gabor filter's unique characteristics for magnifying directional patterns and frequency range selections, improves fingerprint classification accuracy significantly. In this paper, this method is described and its test result is presented for verification.

Bypass, homotopy path and local iteration to compute the stability point

  • Fujii, Fumio;Okazawa, Shigenobu
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.577-586
    • /
    • 1997
  • In nonlinear finite element stability analysis of structures, the foremost necessary procedure is the computation to precisely locate a singular equilibrium point, at which the instability occurs. The present study describes global and local procedures for the computation of stability points including bifurcation points and limit points. The starting point, at which the procedure will be initiated, may be close to or arbitrarily far away from the target point. It may also be an equilibrium point or non-equilibrium point. Apart from the usual equilibrium path, bypass and homotopy path are proposed as the global path to the stability point. A local iterative method is necessary, when it is inspected that the computed path point is sufficiently close to the stability point.

ADAPTIVE GRID SIMULATION OF HYPERBOLIC EQUATIONS

  • Li, Haojun;Kang, Myungjoo
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.279-294
    • /
    • 2013
  • We are interested in an adaptive grid method for hyperbolic equations. A multiresolution analysis, based on a biorthogonal family of interpolating scaling functions and lifted interpolating wavelets, is used to dynamically adapt grid points according to the physical field profile in each time step. Traditional finite-difference schemes with fixed stencils produce high oscillations around sharp discontinuities. In this paper, we hybridize high-resolution schemes, which are suitable for capturing singularities, and apply a finite-difference approach to the scaling functions at non-singular points. We use a total variation diminishing Runge-Kutta method for the time integration. The computational cost is proportional to the number of points present after compression. We provide several numerical examples to verify our approach.

SINGULAR INNER FUNCTIONS OF $L^{1}-TYPE$

  • Izuchi, Keiji;Niwa, Norio
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.787-811
    • /
    • 1999
  • Let M be the maximal ideal space of the Banach algebra $H^{\infty}$ of bounded analytic functions on the open unit disc $\triangle$. For a positive singular measure ${\mu}\;on\;{\partial\triangle},\;let\;{L_{+}}^1(\mu)$ be the set of measures v with $0\;{\leq}\;{\nu}\;{\ll}\;{\mu}\;and\;{{\psi}_{\nu}}$ the associated singular inner functions. Let $R(\mu)\;and\;R_0(\mu)$ be the union sets of $\{$\mid$\psiv$\mid$\;<\;1\}\;and\;\{$\mid${\psi}_{\nu}$\mid$\;<\;0\}\;in\;M\;{\setminus}\;{\triangle},\;{\nu}\;\in\;{L_{+}}^1(\mu)$, respectively. It is proved that if $S(\mu)\;=\;{\partial\triangle}$, where $S(\mu)$ is the closed support set of $\mu$, then $R(\mu)\;=\;R0(\mu)\;=\;M{\setminus}({\triangle}\;{\cup}\;M(L^{\infty}(\partial\triangle)))$ is generated by $H^{\infty}\;and\;\overline{\psi_{\nu}},\;{\nu}\;{\in}\;{L_1}^{+}(\mu)$. It is proved that %d{\theta}(S(\mu))\;=\;0$ if and only if there exists as Blaschke product b with zeros $\{Zn\}_n$ such that $R(\mu)\;{\subset}\;{$\mid$b$\mid$\;<\;1}\;and\;S(\mu)$ coincides with the set of cluster points of $\{Zn\}_n$. While, we proved that $\mu$ is a sum of finitely many point measure such that $R(\mu)\;{\subset}\;\{$\mid${\psi}_{\lambda}$\mid$\;<\;1}\;and\;S(\lambda)\;=\;S(\mu)$. Also it is studied conditions on \mu for which $R(\mu)\;=\;R0(\mu)$.

  • PDF

The Segmented Polynomial Curve Fitting for Improving Non-linear Gamma Curve Algorithm (비선형 감마 곡선 알고리즘 개선을 위한 구간 분할 다항식 곡선 접합)

  • Jang, Kyoung-Hoon;Jo, Ho-Sang;Jang, Won-Woo;Kang, Bong-Soon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.163-168
    • /
    • 2011
  • In this paper, we proposed non-linear gamma curve algorithm for gamma correction. The previous non-linear gamma curve algorithm is generated by the least square polynomial using the Gauss-Jordan inverse matrix. However, the previous algorithm has some weak points. When calculating coefficients using inverse matrix of higher degree, occurred truncation errors. Also, only if input sample points are existed regular interval on 10-bit scale, the least square polynomial is accurately works. To compensate weak-points, we calculated accurate coefficients of polynomial using eigenvalue and orthogonal value of mat11x from singular value decomposition (SVD) and QR decomposition of vandemond matrix. Also, we used input data part segmentation, then we performed polynomial curve fitting and merged curve fitting results. When compared the previous method and proposed method using the mean square error (MSE) and the standard deviation (STD), the proposed segmented polynomial curve fitting is highly accuracy that MSE under the least significant bit (LSB) error range is approximately $10^{-9}$ and STD is about $10^{-5}$.

CONNECTIONS ON REAL PARABOLIC BUNDLES OVER A REAL CURVE

  • Amrutiya, Sanjay
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1101-1113
    • /
    • 2014
  • We give analogous criterion to admit a real parabolic connection on real parabolic bundles over a real curve. As an application of this criterion, if real curve has a real point, then we proved that a real vector bundle E of rank r and degree d with gcd(r, d) = 1 is real indecomposable if and only if it admits a real logarithmic connection singular exactly over one point with residue given as multiplication by $-\frac{d}{r}$. We also give an equivalent condition for real indecomposable vector bundle in the case when real curve has no real points.

A NUMERICAL METHOD FOR SOLVING THE FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND

  • Sridharan, V.;Jayashree, P.R.
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.293-300
    • /
    • 1998
  • The numerical method is used to solve the Fredholm integral equation of the second kind with weak singular kernels using the Toeplitz matrices. The solution has a computing time requir-ment of O(N2) where 2N+1 is the number of discretization points used. Also the error estimate is computed. Some numerical Exam-ples are computed using the Mathcad package.

Boundary element characterization of coplanar waveguide discontinuities by quasi-static approximation (Quasi-static 근사에 의한 코플래너 도파로 불연속의 경계요소 해석)

  • 강연덕;이택경
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.6
    • /
    • pp.1-10
    • /
    • 1997
  • By using the boundary element method, the cahracterization and the circuit modelling of the coplanar waveguide (CPW) discontinuities are performed bvia quasi-static approximation. The capacitive equivalent circuits are obtained by developing the 3-D boundary element method with collocation method. On the triangular patch, the numerical scheme employed the linear basis functions and the analytic solutions of the integrals on the singular points. The capacitive discontinuities of gaps, end-gaps, and open-ends are characterized and the results compared with the conductor backed coplanar waveguides.

  • PDF

Avoiding Indefiniteness in Criteria for Maximum Likelihood Bearing Estimation with Arbitrary Array Configuration

  • Suzuki, Masakiyo
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1807-1810
    • /
    • 2002
  • This paper presents a technique for avoid- ing indefiniteness in Maximum Likelihood (ML) criteria for Direction-of-Arrival (DOA) finding using a sensor ar- ray with arbitrary configuration. The ML criterion has singular points in the solution space where the criterion becomes indefinite. Solutions fly iterative techniques for ML bearing estimation may oscillate because of numerical instability which occurs due to the indefiniteness, when bearings more than one approach to the identical value. The oscillation makes the condition for terminating iterations complex. This paper proposes a technique for avoiding the indefiniteness in ML criteria.

  • PDF

SEMICASCADES OF TORIC LOG DEL PEZZO SURFACES

  • Hwang, DongSeon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.179-190
    • /
    • 2022
  • A cascade of toric log del Pezzo surfaces of Picard number one was introduced as a language of classifying all such surfaces. In this paper, we introduce a generalized concept, a semicascade of toric log del Pezzo surfaces. As applications, we discuss Kähler-Einstein toric log del Pezzo surfaces and derive a bound on the Picard number in terms of the number of singular points, generalizing some results of Dais and Suyama.