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CONNECTIONS ON REAL PARABOLIC BUNDLES OVER

A REAL CURVE

Sanjay Amrutiya

Abstract. We give analogous criterion to admit a real parabolic con-
nection on real parabolic bundles over a real curve. As an application of
this criterion, if real curve has a real point, then we proved that a real
vector bundle E of rank r and degree d with gcd(r, d) = 1 is real inde-
composable if and only if it admits a real logarithmic connection singular
exactly over one point with residue given as multiplication by −

d

r
. We

also give an equivalent condition for real indecomposable vector bundle
in the case when real curve has no real points.

1. Introduction

By a real curve, we mean a pair (X, σX), where X is a compact Riemann
surface and σX is an anti-holomorphic involution on X . A real vector bundle
over a real curve (X, σX) is a pair (E, σE), where π : E → X is a holomorphic
vector bundle and σE is an anti–holomorphic involution on E such that π◦σE =
σX ◦ π and for all x ∈ X , the map σE |E(x) : E(x) → E(σ(x)) is C-antilinear:

σE(λ · η) = λ̄ · σE(η) for all λ ∈ C and all η ∈ E(x),

where E(x) denotes the fibre of E over x ∈ X . Let (X, σX) be a real curve, and
let (E, σE) be a real vector bundle over (X, σX). Let S ⊂ X be a non-empty
finite subset of X such that σX(S) = S. By a real parabolic structure on
(E, σE) over S we mean for each x ∈ S, a strictly decreasing weighted flag in
E(x) which is preserved by σE and the weights over x and σX(x) are same (see
Section 4 for the precise definition). In [1], we have established the equivariant
description of real parabolic bundles for a suitable ramified covering in the
category of real curves.

A theorem due to A. Weil says that a holomorphic vector bundle E over a
compact connected Riemann surface admits a holomorphic connection if and
only if each direct summand of E is of degree zero (see [2], [5]). In [3] it
was proved that parabolic holomorphic vector bundle E admits a parabolic
connection if and only if the parabolic degree of every parabolic vector bundle
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which is a direct summand of E is zero. See [4] for more general statement and
different approach to the similar result on parabolic bundles.

In this paper, we prove the analogue of the above two results for real curves.
In Section 3, we prove that a real vector bundle (E, σE) admits a real connec-
tion if and only if every real direct summand of (E, σE) is of degree zero (see
Proposition 3.7).

In Section 4, we prove that a real parabolic bundle (W,σE) with real para-
bolic structure over S admits a real parabolic connection if and only if every
real parabolic direct summand of (E, σE) is of parabolic degree zero (see The-
orem 4.4). As a consequence of Theorem 4.4, we obtained that a real parabolic
semistable vector bundles of parabolic degree zero admits a real parabolic con-
nection (see Corollary 4.5).

In Section 5, we prove the following proposition as an application of the
main Theorem 4.4. Assume that σX has a fixed point. Let x0 ∈ X be such
that σX(x0) = x0.

Proposition 5.1. Let (E, σE) be a real vector bundle over X of rank r and

degree d with gcd(r, d) = 1. Then the following are equivalent:

(1) The real vector bundle (E, σE) is real indecomposable.

(2) There is a real logarithmic connection D on E singular exactly over x0
with residue

Res(D, x0) = −d
r
1Ex0

.

If σX has no fixed points, then also we prove the similar result for real
indecomposable bundle (see Proposition 5.2).

2. Preliminaries

By a real curve, we mean a pair (X, σX), where X is a compact Riemann
surface and σX is an anti-holomorphic involution on X . Let σC : C → C be
the conjugate map z 7→ z̄.

Proposition 2.1. A continuous involution σ : X → X on a Riemann surface

X is an anti-holomorphic involution if and only if for every open subset U of

X, the map

σ̃ = σ̃U : OX(U) → OX(σ(U))

defined by f 7→ σC ◦ f ◦ σ is an isomorphism of rings.

Proof. If σ : X → X is an anti-holomorphic involution, then the map σ̃U
defined as above will be an isomorphism. Conversely, suppose that the map

σ̃ = σ̃U : OX(U) → OX(σ(U))

defined by f 7→ σC ◦f ◦σ is an isomorphism. For every pair of charts ψ1 : U1 →
V1 ⊂ C and ψ2 : U2 → V2 ⊂ C on X with σ(U1) ⊂ U2, the map

ψ2 ◦ σ ◦ ψ−1
1 : V1 → V2
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is anti-holomorphic, since σC ◦ψ2 ◦σ is holomorphic. This proves that the map
σ : X → X is an anti-holomorphic involution. �

Real vector bundles

Let (X, σX) be a real curve. A real holomorphic vector bundle E → X is a
holomorphic vector bundle, together with an anti-holomorphic involution σE

of E making the diagram

E
σE

//

��

E

��

X σX

// X

commutative such that for all x ∈ X , the map σE |E(x) : E(x) → E(σ(x)) is
C-antilinear:

σE(λ · η) = λ̄ · σE(η) for all λ ∈ C and all η ∈ E(x).

A homomorphism between two real bundles (E, σE) and (E′, σE′

) is a homo-
morphism

f : E → E′

of holomorphic vector bundles over X such that f ◦ σE = σE′ ◦ f .
A holomorphic subbundle F of a real holomorphic vector bundle E is said

to be real subbundle of E if σE(F ) = F .

Real OX–modules

Let (X, σ) be a real curve, and let F be an OX -module. We define an OX -
module Fσ as follows. For any open subset U of X , Fσ(U) = F(σ(U)), and
for every f ∈ OX(U) and s ∈ Fσ(U), f · s = σ̃U (f)s. It is easy to check that
Fσ is an OX -module.

Let φ : F → G be a homomorphism of OX -modules. Define φσ : Fσ → Gσ

as follows: For every open subset U of X ,

φσU : Fσ(U) → Gσ(U), φσU = φσ(U).

If f ∈ OX(U), and s ∈ Fσ(U), then

φσU (f · s) = φσ(U)

(

σU (f)(s)
)

= σU (f)φσ(U)(s),

since φσ(U) is an OX(σ(U))-linear. Therefore, φσ(f · s) = f · φσ(s). It follows
that φσ is a homomorphism of OX -modules.

Definition 2.2. A real structure on an OX–module F is an OX -module ho-
momorphism σF : F → Fσ such that (σF )

σ ◦σF = 1F . By a real OX–module,
we mean a pair (F , σF ), where F is an OX–module and σF is a real structure
on an OX–module F .

Let (F , σF ) and (G, σG) be two real OX–modules. A morphism φ : F → G of
OX–modules is said to be a morphism of real OX–modules if σG ◦φ = φσ ◦σF .
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Remark 2.3. Let E be a real holomorphic vector bundle over a real curve
X . Then the corresponding locally free OX–module E is a real OX–module.
Conversely, if E is a locally free real OX–module, then the corresponding holo-
morphic vector bundle is a real holomorphic vector bundle.

3. Connections on real vector bundles

Let (E, σE) be a real vector bundle over (X, σX). A holomorphic connection
D on E is a C-linear sheaf morphism

D : E → E ⊗KX

which satisfies the Leibniz identity, D(fs) = fD(s) + df ⊗ s, where f is any
locally defined holomorphic function on X and s any local holomorphic section
of E.

Define Dσ : Eσ → Ω1
X(E)

σ
by Dσ

U (s) = Dσ(U)(s) for U open subset of X ,
and s ∈ Eσ(U). Then Dσ is also a holomorphic connection on Eσ .

Definition 3.1. A holomorphic connection D is called a real holomorphic

connection (or just real connection) on (E, σE) if σE ◦D = Dσ ◦ σE .

Proposition 3.2. Let (E, σE) be a real indecomposable vector bundle over

(X, σX). Let φ be a real endomorphism of (E, σE). Then one of the following

holds:

• φ = λ1E + ψ, where λ ∈ R and ψ is a nilpotent real endomorphism of

(E, σE),
• E ∼= F ⊕ F σ, where σE(F ) = F σ and in this case, φ = (λ, λ̄)1E + ψ,
where λ ∈ C and ψ is a nilpotent real endomorphism of (E, σE).

Proof. First note that the characteristic polynomial of φ(x) ∈ End(E(x)) does
not depend on x, as X is compact and connected. Consider the decomposition
of E obtained from generalized eigenspace decomposition for φ. Since φ is a
real endomorphism and (E, σE) is real indecomposable, we either have only
one eigenvalue λ ∈ R or have two eigenvalues λ and λ̄, where λ ∈ C. In the
case where there is only one eigenvalue, consider ψ = φ − λ1E . Then ψ is a
real endomorphism. By Fitting decomposition

E = Ker(ψn)⊕ Im(ψn)

for sufficiently large integer n. Since ψ is real, the subsheaves Ker(ψn) and
Im(ψn) are torsion-free real OX -submodules of (E, σE), and hence real sub-
bundles of (E, σE). Since (E, σE) is real indecomposable, we must have either
Ker(ψn) = 0 or Im(ψn) = 0. Let v ∈ E(x) be an eigenvector of φ(x) : E(x) →
E(x) for the eigenvalue λ. Then, ψ(x)v = 0 and v 6= 0, so ψ can not be an
isomorphism, and hence we must have Im(ψn) = 0, that is, ψ is nilpotent.

In the case where φ has two eigenvalues λ and λ̄, then we have E = F ⊕F σ ,
where F correspond to λ and F σ correspond to λ̄. Note that σE(F ) = F σ .
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Consider the endomorphism ψ := φ−(λ, λ̄)1E . Then ψ is a real endomorphism,
since

σE ◦ (λ, λ̄)1E(v1, v2) = σE(λv1, λ̄v2)
= (λσE(v2), λ̄σ

E(v1))
= (λ, λ̄)1E(σ

E(v2), σ
E(v1))

= (λ, λ̄)1E ◦ σE(v1, v2).

Now the assertion follows by the similar argument as given above. �

Lemma 3.3. Let (E, σE) be a real vector bundle over (X, σX). If E admits a

holomorphic connection, then it admits a real connection.

Proof. Let D1 : E → Ω1
X(E) be a holomorphic connection on E. Let

D′
1 := σE ◦D1

σ ◦ σE : E → Ω1
X(E).

Consider the average

D :=
D1 +D′

1

2
.

Then

D(fs) = 1/2(D1(fs) +D′
1(fs))

= 1/2(fD1(s) + df ⊗ s+ fD′
1(s) + df ⊗ s)

= 1/2(D1 +D′
1)(fs) + df ⊗ s

= D(fs) + df ⊗ s.

Moreover,

σE ◦D = 1/2(σE ◦D1 +D1
σ ◦ σE)

= 1/2(D1
σ ◦ σE +D1

σ ◦ σE)

= D ◦ σE .

Therefore, D is a real connection on (E, σE). �

Lemma 3.4. Let E1 and E2 be two real vector bundles over X. The direct

sum E1 ⊕ E2 admits a real connection if and only if both E1 and E2 admit a

real connection.

Proof. If D1 and D2 are real connections on E1 and E2 respectively, then
D1 ⊕D2 is a real connection on E1 ⊕ E2.

Conversely, if D is a real connection on the real vector bundle E1⊕E2, then
the differential operator

(qEi
⊗ 1KX

) ◦D ◦ ιEi
: Ei → Ei ⊗KX ,

i = 1, 2, is a real connection on the real vector bundle Ei, where ιEi
: Ei →֒

E1 ⊕ E2 is the inclusion morphism, and

qEi
: E1 ⊕ E2 → Ei

the natural projection. This completes the proof. �
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Remark 3.5. Let (E, σE) be a real vector bundle overX . We have Atiyah exact
sequence

(3.1) 0 → End(E) → At(E) → TX → 0.

Recall that a holomorphic connection on E is a holomorphic splitting of the
exact sequence (3.1). There is a nondegenerate C-bilinear pairing

(3.2) 〈•, •〉 : H1(X,KX ⊗ End(E)) ×H0(X,End(E)) → C

given by

(3.3) 〈a, φ〉 =
∫

X

Tr(αφ),

where α ∈ A1,1(End(E))(X) is a Dolbeault representative of a. If E is a real
vector bundle, then there is an induced real structure on H1(X,KX ⊗End(E))
and H0(X,End(E)) which we will denote by σ to ease the notations. Then by
the definition of pairing it is clear that

(3.4) 〈σ(a), φ〉 = 〈a, σ(φ)〉
for a ∈ H1(X,KX ⊗ End(E)) and φ ∈ H0(X,End(E)).

Let

at(E) ∈ H1(X,KX ⊗ End(E)) = H0(X,End(E))∗

be the Atiyah class representing (3.1). Let φ ∈ H0(X,End(E)). Then

(3.5) at(E)(φ) =

{

2π
√
−1deg(E) if φ = 1E ;

0 if φ is nilpotent.

For more details see [2].

Lemma 3.6. If (E, σE) is a real indecomposable vector bundle over (X, σX)
of degree zero. Then (E, σE) admits a real connection.

Proof. Let (E, σE) be a real indecomposable vector bundle over (X, σX) of
degree zero. To show that (E, σE) admits a real connection, it is enough to show
that at(E) = 0. Let φ ∈ H0(X,End(E)). Then the endomorphism φ+ σ(φ) of
E is real endomorphism. Since E is real indecomposable, by Proposition 3.2
we have

• either φ + σ(φ) = λ1E + ψ, where λ ∈ R and ψ is a nilpotent real
endomorphism of (E, σE),

• or E ∼= F ⊕ F σ , where σE(F ) = F σ and in this case, φ + σ(φ) =
(λ, λ̄)1E + ψ, where λ ∈ C and ψ is a nilpotent real endomorphism of
(E, σE).

In both the cases, from (3.5) it follows that

(3.6) at(E)(φ + σ(φ)) = 0.

Recall that

at(E)(φ) = −
∫

X

Tr(Rφ),
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where R is the curvature of the unique C∞ unitary connection on E (with
respect to a fix C∞ Hermitian metric h in E) that is compatible with the
holomorphic structure of E. Since E is real vector bundle, R is real form and
hence from (3.4) it follows that at(E)(φ) = at(E)(σ(φ)). From (3.6) we can
conclude that at(E)(φ) = 0. �

Proposition 3.7. Let (E, σE) be a real vector bundle over (X, σX). Then E
admits a real connection if and only if every real direct summand of (E, σE) is
of degree zero.

Proof. This follows by combining Lemma 3.3, Lemma 3.4 and Lemma 3.6. �

3.1. Connection on real equivariant vector bundles

Let (Y, σY ) be a real curve. Let G be a finite group acting holomorphically
and effectively on Y with the property that σY (gy) = g−1σY (y) for all g ∈ G.

Definition 3.8. A G–equivariant real vector bundle on (Y, σY ) consists of the
following data: a real holomorphic vector bundle (W,σW ) on (Y, σY ), and a
lift of the natural action of G on Y to W such that

(a) the bundle projection π : W → Y is G-equivariant;
(b) if y ∈ Y and g ∈ G, the map W (y) →W (g · y), given by v 7→ g · v is a

linear isomorphism.
(c) the following diagram

G×W //

(inv,σW )

��

W

σW

��

G×W // W

commutes, where inv : G→ G is an inverse map g 7→ g−1.

We say that a real connectionD onW is a real G-connection if it is preserved
by the G-action. Since G is finite, by averaging, we see that if W admits a real
connection, then it admits a real G-connection. The following is immediate:

Proposition 3.9. If W is indecomposable as real G-equivariant bundle of de-

gree zero, then W admits a real G-connection.

Proof. Let φ be an endomorphism of W . Then

φ′ =
∑

g∈G

g(φ+ σ(φ))

is a real G-equivariant endomorphism of W . Since W is indecomposable as
real G-equivariant bundle of degree zero, using the similar arguments as in
Proposition 3.2 and Lemma 3.6 we have at(W )(φ′) = 0. From the proof of [3,
Lemma 2.2], it follows that the Atiyah class at(W ) ∈ H1(Y,KY ⊗ End(W)) is
fixed by the action of G. Therefore,

|G|at(W )(φ + σ(φ)) = 0,
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where |G| denotes the order of the group G. Since at(W )(φ) = at(W )(σ(φ)),
we have at(W )(φ) = 0. �

Theorem 3.10. A real G-equivariant bundle W admits a real G-connection if

and only if every real G-equivariant direct summand of W is of degree zero.

4. Real parabolic connection on real parabolic bundles

Definition 4.1. Let (E, σE) be a real vector bundle over a real curve (X, σX).
Let S be a finite subset of X such that σX(S) = S.

By real quasi-parabolic structure on (E, σE) over S, we mean for each x ∈ S,
there is a strictly decreasing flag

(4.1) E(x) = F 1E(x) ⊃ F 2E(x) ⊃ · · · ⊃ F kxE(x) ⊃ F kx+1E(x) = 0

of linear subspaces in E(x) satisfying the following property:

(RP1) σE preserve the flags, i.e., σE
x (F iE(x)) = F iE(σX(x)).

We define

rj = dim(F jE(x)) − dim(F j+1E(x)).

The integer kx is called the length of the flag and the sequence (r1, . . . , rkx
) is

called the type of the flag.
A real parabolic structure on (E, σE) over S is a real quasi-parabolic struc-

ture on (E, σE) over S as above, together with a sequence of real numbers
0 ≤ αx

1 < · · · < αx
kx
< 1, which are called weights corresponding to the sub-

spaces (F 1E(x), F 2E(x), . . . , F kxE(x)), with the following property:

(RP2) the weights over x and σX(x) are same.

We set

dxE =

kx
∑

j=1

rjαj ,

where rj = dim(F jE(x)) − dim(F j+1E(x)).

The parabolic degree, denoted by pdeg(E), is defined by

(4.2) pdeg(E) = deg(E) +
∑

x∈S

dxE,

where deg(E) denotes the topological degree of E, and we define the parabolic
slope by

(4.3) pµ(E) =
pdeg(E)

rank(E)
.

We recall the definition of real parabolic semistable bundles over a real curve
(see [1]). A real parabolic bundle (E, σE) is called real parabolic semistable if
for every real parabolic subbundle F of E, we have

pµ(F ) ≤ pµ(E).
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Definition 4.2. A real logarithmic connection on (E, σE) singular over S is a
first order differential operator

D : E → Ω1
X(E)(S) := E ⊗KX ⊗OX(S)

which satisfy the following:

(1) σΩ1
X (E)(S) ◦D = Dσ ◦ σE , and

(2) D(fs) = fD(s) + s⊗ df , where f is a locally defined function and s is
a locally defined section of E.

Recall that there is a well define endomorphism of E(x) for each x ∈ S, so
called, residue of D at x, denoted by Res(D, x). Because of the condition (1)
in Definition 4.2, Res(D, x) is a real endomorphism for each x ∈ S, that is, the
following diagram

E(x)
Res(D,x)

//

σE(s)

��

E(x)

σE(s)

��

E(σX(x))
Res(D,σX(x))

// E(σX(x))

commutes for all x ∈ S.
Let (E, σE) be a real parabolic vector bundle on (X, σX) with real parabolic

structure over S.

Definition 4.3. A real parabolic connection on (E, σE) is a real logarithmic
connection D on (E, σE), singular over S, satisfying the following conditions:

(RC) for any x ∈ S, Res(D, x)(F iE(x)) ⊂ F iE(x) and

Res(D, x)|F iE(x)/F i+1E(x) = αx
i · 1F iE(x)/F i+1E(x)

for all i ∈ {1, 2, . . . , kx}, where kx as in (4.1).

Theorem 4.4. A real parabolic bundle (E, σE) admits a real parabolic connec-

tion if and only if every real parabolic direct summand of (E, σE) is of parabolic
degree zero.

Proof. Let (E, σE) be a real parabolic bundle on (X, σX) with real parabolic
structure over S. Let N be a positive integer such that all the weights of
(E, σE) are integral multiple of 1/N . By [1, Lemma 4.1], there exists an N -
fold cyclic ramified covering p : (Y, σY ) → (X, σX) which is ramified over each
point of S. Let Γ be a Galois group of the covering p. By [1, Proposition
5.1], there exists a real Γ-equivariant vector bundle W over (Y, σY ) such that
pΓ∗W (with induced real parabolic structure) is isomorphic to (E, σE) as a real
parabolic bundle on (X, σX) with real parabolic structure over S. Note that
there is a one-to-one correspondence between real subbundles of (E, σE) and
real Γ-invariant subbundles of W [1]. Recall that

(4.4) |Γ| · pdeg(E) = degW,
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where |Γ| denotes the order of the group Γ. Suppose that every real parabolic
direct summand of (E, σE) is of parabolic degree zero. Since real subbundles of
(E, σE) are in one-to-one correspondence with the real Γ-invariant subbundles
of W , using (4.4) it follows that every real direct summand of the real Γ-
equivariant vector bundleW is of degree zero. By Theorem 3.10, it follows that
W admits a real Γ-connection, say D′ : W →W⊗KY . Since KY ∼ p∗KX+Rp,
where Rp is the ramification divisor of p, we can consider the composition

(4.5) W →W ⊗KY → W ⊗ p∗KX ⊗OY (Rp).

Note that OY (Rp) = p∗OX(D), where D =
∑

x∈S s. Hence, from (4.5), we ob-
tain W →W ⊗p∗(KX ⊗OX(D)). By taking direct image and using projection
formula, we get the differential operator

D̃ : p∗W → p∗W ⊗KX(D)

satisfying the Leibniz identity. Since D′ is real Γ-connection, D̃ is a real log-
arithmic connection on p∗W and commutes with the natural action of Γ on
p∗W . Therefore, D̃ induces a logarithmic connection on the invariant direct
image (p∗W )Γ. Now recall that the parabolic structure on (p∗W )Γ (see [1,
Proposition 5.1]) is given as follows: For x ∈ S, let y be a ramified point of p
over x. For the isotropy generator ξ, the distinct eigen-values of the operator
ξ :W (y) →W (y) will be ωk1 , ωk2 , . . . , ωkrx with multiplicity n1, . . . , nrx , where
0 ≤ k1 < · · · < krx < N and ω = exp 2π

√
−1/N . By reindexing, we can write

0 ≤ k′1 ≤ k′2 ≤ · · · ≤ k′r according to their multiplicities, where r = rk(W ). Let
Vi be the ωki-eigenspace in W (y) of the isotropy ξ. Then the real parabolic
structure on (p∗W )Γ over S is given by

(p∗W )Γ(s) ⊃ F 1
y ⊃ F 2

y ⊃ · · · ⊃ F rx
y ⊃ F rx+1

y = 0,

where F i
y = Vi ⊕ · · · ⊕ Vrx with associated weight ai = ki/N for i = 1, . . . , rx.

Consider the weights 0 ≤ α1
x ≤ α2

x ≤ · · · ≤ αr
x according to their multiplici-

ties, where αi
x = k′i/N . Consider the local model of p. Let

D = {z ∈ C | |z| < 1}
be the open unit disk, and let

p : D → D

be the holomorphic map defined by z 7→ zN . Consider the trivial vector bundle
WD := D × Cr of rank r = rk(W ). The action of the isotropy generator of Γ
on WD is given by

(z, v) 7→ (ωz,∆0(v)),

where ∆0 = diag(ωk′

1 , . . . , ωk′

r).
From this local description and the induced real parabolic structure on

(p∗W )Γ, it follows that the residue Res(D, x) preserves the quasi-parabolic
structure and it acts on F iE(x)/F i+1E(x) as multiplication by kxi /N for any
x ∈ S.
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Conversely, assume that a real parabolic bundle (E, σE) admits a real par-
abolic connection, say D′. The pullback of the real connection D′ is indeed a
real Γ-invariant connection on restriction of W to Y \ T , where T = p−1(S).
This induced connection on W |Y \T extends to W over Y . Recall that the real
parabolic direct summands of E are in one-to-one correspondence with real Γ-
equivariant direct summands of W . By Theorem 3.10 and (4.4), it follows that
every real parabolic direct summand of (E, σE) is of parabolic degree zero. �

Corollary 4.5. Every real parabolic semistable vector bundle of parabolic de-

gree zero admits a real parabolic connection.

Proof. If (E, σE) is a real parabolic semistable vector bundles of parabolic de-
gree zero, then the parabolic degree of every real parabolic vector bundle which
is direct summand of (E, σE) (as real parabolic bundle) is zero. Therefore, the
corollary follows from Theorem 4.4. �

5. Real indecomposable bundles and real logarithmic connections

Let (X, σX) be a real curve. Assume that σX has a fixed point. Let x0 ∈ X
be such that σX(x0) = x0.

Proposition 5.1. Let (E, σE) be a real vector bundle over X of rank r and

degree d with gcd(r, d) = 1. Then the following are equivalent:

(1) The real vector bundle (E, σE) is real indecomposable.

(2) There is a real logarithmic connection D on E singular exactly over x0
with residue Res(D, x0) = − d

r1E(x0).

Proof. Assume that (E, σE) is real indecomposable. Since r and d are coprime,
we can write d = rk + d0, −r < d0 < 0. Let E′ := E ⊗ OX(−kx0). Since
σ(x0) = x0, the vector bundle E′ is real vector bundle. Clearly, the real

vector bundle (E′, σE′

) is real indecomposable if and only if (E, σE) is real
indecomposable. The de Rham differential f 7→ df defines a real logarithmic
connection D0 on the real line bundle OX(−kx0) singular exactly over x0. The
residue of D0 at x0 is k.

The real vector bundle (E′, σE′

) is equipped with the following real parabolic
structure over x0. The real quasi-parabolic structure is the trivial one, i.e.,
E′(x0) ⊃ 0, and the parabolic weight of E′(x0) is

−d0

r . Note that 0 < −d0

r < 1.
We have

pdeg(E′) = deg(E′) + dx0
E′ = d0 − r · d0

r
= 0.

Using Theorem 4.4 it follows that there is a real logarithmic connection D′ on
E′ singular exactly over x0 with residue Res(D′, x0) = − d0

r 1E′(x0). This real

logarithmic connection D′ on E′ with residue − d0

r 1E′(x0) and the de Rham log-
arithmic connection on OX(kx0) together induce a real logarithmic connection
on E singular exactly over x0 with residue − d

r1E(x0).
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Conversely, assume that there is a real logarithmic connection D on E sin-
gular exactly over x0 with residue Res(D, x0) = − d

r1E(x0). Then the real

parabolic bundle (E′, σE′

) (defined above) admits a real parabolic connection.
By Theorem 4.4 for each real direct summand of E′, the real parabolic subbun-
dle F with induced real parabolic structure is of parabolic degree zero. Suppose
(E′, σE) = (E1, σ

E1)⊕ (E2, σ
E2). With the induced real parabolic structure on

(Ei, σ
Ei), we have

pdeg(Ei) = di − ri ·
d0
r

= 0,

where ri = rank(Ei) 6= 0 and di = deg(Ei) with d1 + d2 = d0. This implies
that

di
ri

=
d0
r
.

From this it follows that r and d are not coprime, which is a contradiction.
Therefore, the real vector bundle E′ is real indecomposable and hence E is real
indecomposable. �

We now assume that σX has no fixed point. Let S be a non-empty finite
subset of X such that σX(S) = S. Then the cardinality of S is even, say n. Let
us write S = {x1, x2, . . . , xn−1, xn}, where σX(xi) = xi+1 whenever i is odd.

Proposition 5.2. Let (E, σE) be a real vector bundle over X of rank r and

degree d with gcd(r, d) = 1. Then the following are equivalent:

(1) The real vector bundle (E, σE) is real indecomposable.

(2) There is a real logarithmic connection D on E singular exactly over

each point of S with residue at each point of S as follows:

(a) Res(D, x1) =
−d−(2n−1)

nr 1E(x1),

(b) Res(D, x2j) =
−d+(n+1)

nr 1E(x2j), j = 1, . . . , n2 ,

(c) Res(D, x2j−1) =
−d−(n−1)

nr 1E(x2j−1), j = 2, . . . , n2 .

Proof. Consider the divisor

∆ = −2kx1 + kx2 +

n
∑

i=3

(−1)i−1kxi ,

where k is as in the proof of Proposition 5.1. Set E′ := E⊗OX(∆). Note that
E′ is a real vector bundle equipped with the following real parabolic structure
over S: The real quasi-parabolic structure is trivial and the weights over each
point of S are same given by − d0

nr , where d0 = d− rk (see Definition 4.1). We
have

pdeg(E′) = deg(E′) +
∑

x∈S

dxE
′ = d0 − r · nd0

nr
= 0.

The rest of the proof is similar to Proposition 5.1 with simple computation. �
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Remark 5.3. In the second statement of Proposition 5.2, one can interchange
the residue at x2j and x2j−1. In that case one has to change the definition of
the divisor ∆ used in the proof of Proposition 5.2 in order to get the proof.
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[5] A. Weil, Généralisation des fonctions abéliennes, J. Math. Pures Appl. 17 (1938), 47–87.

Institute of Mathematical Sciences

CIT Campus

Taramani, Chennai 600 113, India

E-mail address: amrutiya@imsc.res.in


