• 제목/요약/키워드: singular perturbation

검색결과 119건 처리시간 0.026초

채널 역변환 매트릭스의 가장 큰 싱귤러 값 영향을 줄이는 다중 사용자 프리코딩 (Power Efficient Precoding by Reducing the Effect of the Largest Singular Value of channel Inverse Matrix)

  • 노세용;양현욱;정정화
    • 디지털산업정보학회논문지
    • /
    • 제8권4호
    • /
    • pp.115-120
    • /
    • 2012
  • In multi-user multi-input multi-output (MU-MIMO) system, zero forcing beamforming (ZFB) is regarded as a realistic solution for transmitting scheme due to its low complexity and simple structure. However, ZFB shows a significant performance degradation when channel matrix has large condition number. In this case, the largest singular value of the channel inversion matrix has a dominant effect on transmit power. In this paper, we propose a perturbation method for reducing an effect of the dominant singular value. In the proposed algorithm, channel inverse matrix is first decomposed by SVD for the transmit signal to be expressed as a combination of singular vectors. Then, the transmit signal is perturbed to reduce the coefficient of the singular vector corresponding to the largest singular value. When a number of transmit antennas is 4, the simulation results of this paper shows that the proposed method shows 8dB performance enhancement at 10-3 uncoded bit error rate (BER) compared with conventional ZFB. Also, the simulation results show that the proposed method provides a comparable performance to Tomlinson-Harashima Precoding (THP) with much lower complexity.

디스크형태의 해석적영역을 가지는 이산모델 차수축소 (Discrete model reduction over disc-type analytic domains)

  • 오도창;정은태;이갑래;박홍배
    • 전자공학회논문지S
    • /
    • 제35S권5호
    • /
    • pp.27-34
    • /
    • 1998
  • This paper is on the discrete model reduction method over disc-type analytic domains. We define hankel singular value over the disc that is mapped by standard bilinear mapping. And the generalized singular perturbation approximation and the direct truncation are generalized to GSPA and DT over a disc. Furthermore, it is shown that the reduced order model over a smaller domaing has a smaller .inf.-norm error bound. And the poposed reduction method is used to obtain the regional pole placement property.

  • PDF

DISCRETE MODEL REDUCTION OVER DISC-TYPE ANALYTIC DOMAINS AND $\infty$-NORM ERROR BOUND

  • Oh, Do-Chang;Lee, Kap-Rai;Um, Tae-Ho;Park, Hong-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.64-68
    • /
    • 1996
  • In this note, we propose the discrete model reduction method over disc-type analytic domains. We define Hankel singular value over the disc that is mapped by standard bilinear mapping. And GSPA(generalized singular perturbation approximation) and DT(direct truncation) are generalized to GSPA and DT over a disc. Furthermore we show that the reduced order model over a smaller domain has a smaller L$_{\infty}$ norm error bound..

  • PDF

발란싱축소화로 구한 축소모델로부터 원 시스템 상태변수를 구하는 방법 (Approximation of the State Variables of the Original System from the Balanced Reduced Model)

  • 정광영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.333-333
    • /
    • 2000
  • When the generalized singular perturbation method is used for model reduction, the state variables of the original system is reconstructed from the reduced order model. The state reduction error is defined, which shows how well the reconstructed state variables approximate the state variables of the original system equation.

  • PDF

Multi-Input Multi-Output Nonlinear Autopilot Design for Ship-to-Ship Missiles

  • Im Ki-Hong;Chwa Dong-Kyoung;Choi Jin-Young
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.255-270
    • /
    • 2006
  • In this paper, a design method of nonlinear autopilot for ship-to-ship missiles is proposed. Ship-to-ship missiles have strongly coupled dynamics through roll, yaw, and pitch channel in comparison with general STT type missiles. Thus it becomes difficult to employ previous control design method directly since we should find three different solutions for each control fin deflection and should verify the stability for more complicated dynamics. In this study, we first propose a control loop structure for roll, yaw, and pitch autopilot which can determine the required angles of all three control fins. For yaw and pitch autopilot design, missile model is reduced to a minimum phase model by applying a singular perturbation like technique to the yaw and pitch dynamics. Based on this model, a multi-input multi-output (MIMO) nonlinear autopilot is designed. And the stability is analyzed considering roll influences on dynamic couplings of yaw and pitch channel as well as the aerodynamic couplings. Some additional issues on the autopilot implementation for these coupled missile dynamics are discussed. Lastly, 6-DOF (degree of freedom) numerical simulation results are presented to verify the proposed method.

$H_{\infty}$ Composite Control for Singularly Perturbed Nonlinear Systems via Successive Galerkin Approximation

  • Kim, Young-Joong;Kim, Beom-Soo;Shin, Eun-Chul;Yoo, Ji-Yoon;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.407-412
    • /
    • 2004
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ composite control of singularly perturbed nonlinear systems with a exogenous disturbance, using the successive Galerkin approximation(SGA). The singularly perturbed nonlinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale via singular perturbation theory, and two $H_{\infty}$ control laws are obtained to each subsystem by using the SGA method. The composite control law that consists of two $H_{\infty}$ control laws of each subsystem is designed. One of the purposes of this paper is to design the closed-loop $H_{\infty}$ composite control law for the singularly perturbed nonlinear systems via the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

  • PDF

Trajectory tracking and active vibration suppression of a smart Single-Link flexible arm using a composite control design

  • Mirzaee, E.;Eghtesad, M.;Fazelzadeh, S.A.
    • Smart Structures and Systems
    • /
    • 제7권2호
    • /
    • pp.103-116
    • /
    • 2011
  • This paper is concerned with the trajectory tracking and vibration suppression of a single-link flexible arm by using piezoelectric materials. The dynamics of a single flexible arm with PZT patches as sensor and actuator is derived using extended Hamilton's principle. Resulting equations show that the coupled beam dynamics including beam vibration and its rigid in-plane rotation takes place in two different time scales. By using singular perturbation theory, the system dynamics is divided into two subsystems. Then, a composite control scheme is elaborated that makes the orientation of the arm track a desired trajectory while suppressing its vibration. The proposed controller has two parts: one is a tracking controller designed for the slow (rigid) subsystem, and the other one is a stabilizing controller for the fast (flexible) subsystem. The outputs considered for the system are angular position of the hub and voltage of the sensor mounted on the structure. To avoid requiring further measurements of beam vibration and also angular velocity of the hub for the fast and slow control laws, respectively, two sliding mode observers for estimating the unknown states are also designed.

수중 운동체의 운동 특성을 고려한 입/출력 제어기 구성에 관한 고찰 (A Study on an Input-Output Controller Based on the Time-Scale Properties of an Underwater Vehicle Dynamics)

  • 조경남;서동철;최항순
    • 대한조선학회논문집
    • /
    • 제45권5호
    • /
    • pp.469-476
    • /
    • 2008
  • In this paper, it is shown that an input-output (I/O) feedback linearized controller can be designed rationally by utilizing the time-scale properties of heave and pitch for an underwater vehicle. It is assumed that the dynamics of the vehicle is restricted to the vertical plane. An output-feedback control is designed, which stabilizes steady cruising paths. It is shown that the vehicle dynamics with acceleration as output becomes minimum phase. The dynamics can be transformed into a reduced system through a kind of partial linearization and singular perturbation technique. The reduced system is not only minimum phase but also exactly I/O linearizable via feedback. The I/O dynamic characteristics of the heave and pitch modes can be made linear and decoupled. Furthermore it becomes independent of cruising condition such as vehicle velocity. This study may help for designing autopilot systems for underwater vehicles.

단순화된 입출력선형화방법에 의한유동전동식의 강인한 속도 및 효솔제어 (Robust Speed and Efficiency Control of Induction Motors via a Simplified Input-Output Linearization Technique)

  • 김규식;고명삼;하인중;김점근
    • 대한전기학회논문지
    • /
    • 제39권10호
    • /
    • pp.1066-1074
    • /
    • 1990
  • 본 논문에서는 유동전동기에 최근에 개발된 비선형 제어이론을 적용시켜 회전자 속도와 회전자 자속사이에 간섭이 일어나지 않는 선형 시스템으로 변환시킴으로써 제안한 제어기가 유도전동기를 고성능뿐만 아니라 고효율로 제어할 수 있음을 수학적인 분석, 시뮬레이션, 그리고 실험을 통해 보였다. 제안한 제어기는 d-p동기 회전축과 x-y고정자축 사이의 변환, 전기각 속도의 적분, 그리고 전압방정식에서 역기전력과 결합항의 보상등이 필요치 않기 때문에 기존 벡터 제어기보다 계산이 간단하다는 장점을 갖고 있고 특히 전동기 매개변수의 변화에 강인한(robust) 특징을 갖고 있다. 본 논문이 제안한 설계방법은 최근에 개발된 이론인 특이섭동기법(singular perturbation technoque)과 비간섭 궤환제어(noninteracting feedback control)에 기초를 두고 있는데 실제로 이 이론들이 유도 전동기의 속도 및 효율제어에 효과적으로 적용됨을 본 논문을 통해 보이고 있다.