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Absrtact In this note, we propose the discrete model reduction method over disc-type analytic
domains. We define Hankel singular value over the disc that is mapped by standard bilinear
mapping. And GSPA(generalized singular perturbation approximation) and DT(direct truncation)
are generalized to GSPA and DT over a disc. Furthermore we show that the reduced order
model over a smaller domain has a smaller L~ norm error bound.
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1. INTRODUCTION

Discrete balanced model reductions such as
GSPA[1]-[3] at z= =1 and DT[4] are now standard
results of the discrete model reduction theory. The
errors in these methods are bounded in the sense of
the L» norm over the UCO(unit circle outside). Many
researchers[2],[31,15),[7] have found the L= norm error
bounds over the UCO and tried to reduce them. And
the model reduction techniques considering frequency
band are reported in many papers[3],[7]-[9]. We here
consider a discrete model reduction over a disc-type
analytic domain that is different from the outside of
the unit circle. In the case of a continuous time
system, Jonckheere et al[8] proposed the model
reduction method over a disc using a bilinear mapping
that maps the right half plane onto the disc.

In this paper, we shall focus on disc domains that
are bounded by a circle in the wide sense(ie, a
straight line is also considered to be a circle in the
complex plane and the disc domain could be the
inside or the outside of the circle). Firstly, we define
the standard bilinear mapping to the disc domain D
and Hankel singular value over the disc. Secondly, we
show the monotone property of Hankel singular
values over the disc. As a results, when standard
discrete balanced model reduction such as GSPA at at
z=1*1 and DT is generalized to discrete balanced
mode} reduction over a disc, we show that the
reduced order model over a smaller disc domain has a
smaller L= norm error bound. By proposed method,
we consider the working signal of system in a certain
class of signals with limited frequency and transient
speed. Finally, we give a small example to illustrate
the validity of the proposed reduction procedure.

2. STANDARD BILINEAR MAPPING TO
DISC TYPE ANALYTIC DOMAINS
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Let us first have some definitions and consider the
standard bilinear mapping that maps UCO onto a
specific disc D.

Definition 1: A bilinear mapping from the complex
plane to the complex plane is of the form
y— @+ g :
k(z) o (D
and any circle in the complex plane can be mapped a
circle in the complex plane by the bilinear mapping.

Of special interest is the mapping that maps UCO
onto a disc D-a domain bounded by a circle. For the
convenience of the exposition, we shall always
assume that D is symmetric w.r.t. the real axis, and
we want any two points symmetric about the real
axis to be mapped to two points w.r.t. the real axis..

Definition 2: A bilinear mapping that maps UCO
onto the disc D is called standard if it is of one of
following forms:

_fatbz+(a—b) _ _(a—hz+(ath)
h(Z)—— ¢ 9z = ’ k(z)~ a 3 a 1 (2)

- {atDz+(a=1) ~fa—Dzt+(a+])
h(z)= z+1 , W2)= z+1 ’

where a,b are real numbers, and two intersecting
points of the boundary of the circular disc and real
axis are (a,70) and (b,70). And a intersecting point
of the straight line and real axis is (a,70).

The generalized notion of disc D is represented in
Fig. 1. Above standard mapping that maps UCO onto
D preserves the symmetry of any two points w.rt
the real axis. Let the poles of G(z) be outside the
disc D, and h(2z) be a standard bilinear mapping that
maps UCO onto D. Then we know that G(A(2)) is
asymptotically stable. In what follows, we shall be
using standard bilinear mappings only.



Consequently, we know that P=P,
r<{1, there exist P and P, satisfying P,—

from (13). If
P20
because @<0. And we can similarly prove for the

observability grammians in (10) and (12). Therefore
we conclude that ¢, (G(2)) 26 ,(G(rz+ r—1)) [ ]

In theorem 1, a mapped analytic domain by
W z)=rz+r—1 is represented in (a) of Fig. 2, where
r is the radius of large circlee Note that
6 {G(h(2)))=06p(G(2z)) and the large circle has to

contain all poles of G(z2).

Theorem 2: Assume that
bounded and analytic in UCO, then

ai(G(_@)Z_
a—1.

G(2)=(A,B,C,D) is
o (G(2)=

atl )), where a is a real value and

Proof: We here prove theorem 2 using similar
procedures to the proof of theorem 1. From lemma 1,
when a standard bilinear mapping 1s given by

,,(2)=Q;DZ€M, of
G(n(2)), (A4, By, C

a minimal realization

»), 1s obtained as

A=—p2A+pI+2D !,
B,=—V20(2A+pI+2D ~'B,
Cuy=—V20CQA+pI+2D !,

(16)

where p=—(a+1)>0. Then we have two Lyapunov
equations:

an
{18)

P,+B,Bl=0,
Q4+ CiC,=0,

APLAL-
AlQ.A -

where P, and @, are controllability and observability
a—1)z+a+1
qle=lietatl,

grammian of From

(17), we obtain

respectively.

APAT+ 2L AP+ 2EL P AT+ (p+1)P— L BBT=0.

(19
Subtracting (19) from (9), we have
A(P-POAT—(P-PY+0=0, (20)
=— ¥l Ap,— 232 p AT (p+2Ps+ T2 BBT,
(21)
and if @=0, there exist P and P, satisfying

P—P,>0. From (19), we find BB” and substitute
it into (21). Then we have a simplified form:

O=(A+ Dy, Pi(A+D T20, nz—i—l. 22)
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And we can similarly prove for the observability
grammians in (10) and (18). Therefore we conclude

that 0AG(2) 2o (G({e=1ttatly) |

A mapped analytic domain by h(z)=—@%m
is represented in (b) of Fig. 2.

Lemma 3: let D, and D, be the two discs

symmetric w.r.t. the real axis. G(z) is bounded and
analvtic in D; and D,©D,. The boundaries of D,

and D, have a common point on the real axis. Then

0p,,(G(2D)<0,,,(G(2), (23)
where the subscript 's’ is used to indicate the small
domain, and '/’ the large domain.

Prodf: We construct a bilinear mapping #A(z) such
that D, is mapped onto UCO. Since D,&D,;, D, is
mapped onto a subset of UCQ. If we choose Kh(z)
such that the common point of the two circles is
mapped to the point at —1 of the complex plane, the
boundary of D, is also mapped to a circle outside
the unit circle with the point at —1. That is to say,
there exists a standard bilinear mapping #(:) such
that

KUCO)
WUCO)=D, and h($2=1

=D, and W rUCO+r—1)=D,,
YUCQO+a+1
2UCO

otherwise
)=D,,

where n{>1) and a(<—1) are real values. We have

GD,i(G(Z)): 6;(G(h(ﬂ+ y— 1))): U.(F(rz+ r— 1)). or
op (G(2)= gi(c(h(_(.a_:_DML)))
= aAF\_LD_‘Z;ﬁ_QiL)),

(24)

where 6 p,,(G(2))=0,(G(h(2))=0,(F(2)). For the
case of the disc where is in the right or left hand
side of the straight line, we see easily that two discs
satisfying D, &D, have a common point at infinity.
If we choose h(z) such that the common point is
mapped to the point at —1 of the complex plane,
then we can get the same result as the case of the
disc with circular bound. Consequently, we see that
0p(G(2)) <0 p,(G(2)) from theorem 1 and 2. [ ]

Theorem 3: let D, and D, be the two discs

symmetric w.r.t. the real axis and D,ED,;. G(2) is
bounded and analytic in D,. Then
0 5 (2) <6 5,(G(2)). (25)



3. HANKEL SINGULAR VALUE OVER DISC D
IN DISCRETE TIME SYSTEM

In this section, the Hankel singular value over D
in discrete time system is defined. There are two
standard bilinear mappings that map UCO onto a
given disc D, and we prove that the Hankel singular
values over the disc are independent of the choice of
the standard bilinear mappings.

Definition 3: Let G(z) be a transfer function
matrix with McMillan degree = that is bounded and
analytic in D. h(z) is a standard bilinear mapping,
ie, MUCO)=D. The ith Hankel singular value
over D is defined as

0 pi: =0, (G(A(2))), (3)
where 6{F(2)) is ith standard Hankel singular value
of F(2). And ||G(2)|| mp: =6 (G(h(2))) is the Hankel
norm of G(z) over D, where ¢,(F(2)) is the largest
Hankel singular value of F(z).

Lemma 1 [9): Let G(2) be the transfer function matrix
same as in definition 3. A(2)=(az+8)/(rz+8) is a
bilinear mapping with w=|ad— 84 V*>0. If (A, B,C,D)
is a minimal realization of G(z), then a minimal
realization of G(k(z)), (A,,B4 Cs D, is given by

A= (al—7A) "Y(8A-8D),
B = ulal— 7A) "B,
C = wClal— yA) ~*,
D,= D+ wC(al— yA) ~'B.

(4)

As already mentioned, we show that the Hankel
singular values over D are independent of the choice
of the standard bilinear mappings that map UCO onto
a disc.

Lemma 2: let #,(z) and hy(2) be the two
standard mappings that map UCO onto a disc D, and
G(z) be a transfer function matrix bounded and
analytic in D. We then have

o {G(h,(2))=0a {GC(h,(2))). 5)

Proof: We shall prove the lemma only for the case
where the disc D is the outside of the circle. For the
case where D is the inside of the circle, the proof is

similar. Two standard mappings to the outside of the
circle are given by

_la—bzt(atbh) (b—a)z+(bta)
h}(z)'— a b22+ atb , h2(2)= b a22+ bta .

(6)

From lemma 1, we can get minimal realizations of
G(h \(2)) and G(h,(2)). And we have the following
Lyapunov equations:
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(a—b) "2RA —(a+ NP, 2A—(a+ D)D) T
—P+w¥a-b"iBBT=0,
(b—a) 224 —(b+a)}\P2A—(b+a)D} "
— P+ w*(b—a) ’BBT=0,

)]

®

where w=12(a— b)| /%, and from (7) and (8) we see
that P,= P, And we can similarly prove that the

observability grammians of the G(k(2) and
G(hy(2)) are the same. Therefore we conclude that
the Hankel singular values of G(kh,(2)) and
G(h(2)) are the same. B

4. MONOTONE PROPERTY OF HANKEL
SINGULAR VALUE OVER DISC D

The tradeoff between the size of the disc domain
and model reduction error is an important issue. And
we show that the discrete system analytic over a
smaller domain has a smaller Hankel singular value.

Theorem 1: Assume that G(z)=(A,B,C,D) is
bounded and analytic in UCO, then 04{G(2))=
6 {G(rz+r—1)), where r is a real value and r=1.

Proof: We consider the following standard
Lyapunov equations:

APAT—-P+BBT=), 9

ATQA-Q+CTC=0. 10)

From lemma 1, when a standard bilinear mapping is
given by h(z)=rz+r—1, we have

(11)
12)

r HA— v+ DPy(A-2I+ D T—P,+7r 'BBT=0,
r HA-A+DTQUA— I+ D—-Q,+r CTC=0,

where P, and @, are controllability and observability

grammian of G(rz+ r—1), respectively. Subtracting (11)
from (9), we obtain

AP-PYAT—(P-Pp+0=0, 13)

O0=(r—1DAP,+(r—1DP,AT—P, 14)
—(1-2nP,+(1—-»BBT,

and if @=0, there exist P and P, satisfying

P—P,>0 because all the eigenvalues of A are
inside the unit circle. From (11), we find (1-»BB”
and substitute it into (14). Then since P,=20 and
r>1, we have

O=(r—1D{AP,+P,AT - P,—(1-20P,—r 'AP,AT
+APAT+(r—Dr AP+ (r—Dr 'PAT
—(r—D{AP,+ PAT - -2nr P, +(1-2nP,

=(1—r "MAPLAT+ AP+ PLAT+P,) 4s)

—=(A+DnPA+D 20, m="T3



Prodf: Since D.,D,, there exists a disc D,
symmetric w.r.tt the real axis that satisfies
D<eD.,=D, and the boundary of D, has a
common point on the real axis with both of two discs
as seen in Fig. 3. Then from lemma 3, we have

0p,i(G(2))<0p () <0p,(G(2)), (26)

where {|G()| up, < 1G(2)|| mp, |

5. DISCRETE MODEL REDUCTION AND
L. NORM ERROR BOUND

We propose the discrete balanced model reduction
over disc D. For the given reduction technique, we
can choose an analytic disc domain to reduce L=
norm error bound. And we apply this concept of
discrete model reduction over D to the discrete
balanced model reduction such as GSPA[2] of
balanced system at z= 1 and DTI4].

Theorem 4: let D be a disc symmetric w.r.t. the
real axis. G(z) is bounded and analytic in D. Then
the reduced order model by the discrete balanced
model reduction over D, G z2), is also analvtic in D.

Proof: let h(z) be a standard bilinear mapping
that maps UCO onto D, and G ,(k(2)) be the reduced
order model by the standard discrete balanced model
reduction of G(h(z)). Since G(z) is analytic in D,
G(h(z)) must be analytic in UCO, and so is
G ,(h(2)), which means that G ,(z) is analytic in D.

[ |

Theorem 5 let D be a disc symmetric w.r.t. the
real axis. G(z) is bounded and analytic in D. The
Hankel singular values of G(2) over D are given by

601)0‘02)0'[)3)"')60,,)0, (27)

where op has muliplicity r;. Then an error bound
between G(z) and G 4(z) is as follows:

Su%dm(G(Z)_Gb(Z)) Sz(”D(k+l)+'"+aDn)' (28)

where (r,+:-+ry is the reduced order and & .
is the largest singular value.

Proof: Let h(z) be a standard bilinear mapping
that maps UCO onto D. From the standard discrete
balanced model reduction theory[1]-[5], we have

[Sup o max(G(A( 2)) ~ G (W 2)) <200 pres 1y + *+* + 0 p),

when we assume that z= h(z), it is easily seen that
ze UCO® zeD. Therefore (28) is satisfied. a
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From theorem 3, we know that if D,&SD; then

the corresponding L~ norm error bound is represented
by

E;=200pu+nt =+ 0pW2E . =20p,u+1+ "+ 0p.).

This means that the reduced order model over a
smaller domain has a smaller model reduction error.

Remark:- For an unstable discrete systems, if we
choose a disc such that the circle contains all the
poles of the unstable system, it is able to reduce the
unstable discrete system over the disc[8].

Algorithm and Example: Algorithm is as follows:

step 1 Find a standard bilinear mapping #4(z) for a
given disc D.

step 2 Compute F(z)= G(4(z)) using lemma 1.

step 3 Find a standard balanced reduced order model
of F(2).

step 4 Construct the inverse bilinear mapping of
h(z), h~'(z). Then the reduced order model
over D is given by G (2)=F (& '(2)),
where F ,(z) is a reduced order model
of F(2).

Example: We consider a 7th-order discrete transfer
function to show the validity of the proposed the
discrete model reduction procedure.

-
o]

)%
.008

ofn

It is reduced to 4th-order system by GSPA at
z==*] or DT. Then we compare the standard GSPA
over UCO with the proposed GSPA over D with its
intersecting points, (-5, j0) and (1, jO). The frequency
responses are shown in Fig. 4 and 5. We have
frequency responses in w-domain with sampling time
T = 10[ms]. Therefore the area with frequency above
Nyquist frequency is neglected. From Fig. 5 we see
that GSPA and DT over the disc D have good
approximations in low frequency area.

The Hankel singular value over UCO is given by
(0543126, 0491837, 0.140245, 0.120304, 0.096332,
0.068325, 0.064708) and L~ norm bound over UCO is
0.458733. The Hankel singular value over D is given
by (0.075382, 0.007811, 0.004818, 0.001287, 0.000015,
0.0000004, 0.00000002), and L~ norm bound over D is
0.00003169.

6. CONCLUSION

We defined the Hankel singular value over the
disc that is mapped by a standard bilinear mapping.
And we generalized the standard GSPA at z= *1
and DT to the GSPA at z= %1 and DT over a
specific disc domain. We showed that the reduced




order model over a smaller disc domain has a smaller
L= norm error bound. We gave a small example to
illustrate the validity of the proposed

reduction procedure.
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Fig. 1. The generalized notion of a dosc D.
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(a— l)z+a+

(b) K2)=
Fig 2. The analytic domains for theorem 1 and 2.

(@ H)=rz+r—1

Dt

Fig. 3. The disc D, in the proof of theorem 3.
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Fig. 4. Reduced order models over UCO.

10
leB}

-20

10° fredioegy 10°

Fig. 5. Reduced order models over the disc D.



