
ICCAS2004 August 25-27, The Shangri-La Hotel, Bangkok, THAILAND

H∞ Composite Control for Singularly Perturbed Nonlinear Systems via Successive

Galerkin Approximation

Young-Joong Kim, Beom-Soo Kim, Eun-Chul Shin, Ji-Yoon Yoo, and Myo-Taeg Lim∗

∗Department of Electrical Engineering, Korea University, 1, 5-ka, Anam-dong, Seoul 136-701, Korea.

Phone: +82-2-3290-3698, Fax: +82-2-929-5185, E-mail: kyjoong @elec.korea.ac.kr, soo@elec.korea.ac.kr,

churky@elec.korea.ac.kr, jyyoo@korea.ac.kr, mlim@elec.korea,ac,kr

Abstract: This paper presents a new algorithm for the closed-loop H∞ composite control of singularly perturbed nonlinear

systems with a exogenous disturbance, using the successive Galerkin approximation(SGA). The singularly perturbed nonlinear

system is decomposed into two subsystems of a slow-time scale and a fast-time scale via singular perturbation theory, and two

H∞ control laws are obtained to each subsystem by using the SGA method. The composite control law that consists of two H∞
control laws of each subsystem is designed. One of the purposes of this paper is to design the closed-loop H∞ composite control

law for the singularly perturbed nonlinear systems via the SGA method. The other is to reduce the computational complexity

when the SGA method is applied to the high order systems.
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1. Introduction

Many real physical systems are described by singularly per-

turbed nonlinear systems [1], [2], [3]. Singularly perturbed

systems include two or multi time scales and have been stud-

ied by many researchers [2], [3], [4]. In the class of optimal

control [5], design of the control law for the singularly per-

turbed systems has ill-defined numerical problems [2], [3],

[4]. To avoid these problems, the full order system is de-

composed into reduced slow and fast subsystems, and then

optimal control laws are designed for each subsystem. Thus,

the near-optimal composite control law consists of two op-

timal sub-control laws [2], [3], [4]. In addition, recently, ro-

bust control is issued and developed by many researchers for

linear systems [6], [7] [8], [9]. But in the class of nonlin-

ear systems, conditions for the solvability of the robust H∞
design problem are hardness and the solution of Hamilton-

Jacobi-Bellman(HJB) can be hardly found [10], [11], [12],

and thus we will find the approximated solutions using suc-

cessive Galerkin approximation(SGA) [13], [14].

However, the SGA method has the difficulty that the com-

plexity of computations increases according to order of sys-

tem. Therefore the full order system is decomposed into the

reduced order subsystems via singular perturbation theory

and then two robust H∞ sub-control laws are designed for

the corresponding slow and fast nonlinear systems using the

SGA method, respectively. The obtained closed-loop H∞
composite control law is represented by a linear combination

of the slow and fast variables.

The purpose of this paper is to design the closed-loop H∞
composite control laws for singularly perturbed nonlinear

systems using the SGA method. In order to obtain the

closed-loop H∞ control law using the SGA method, one must

compute n−dimensional integrals, and the number of com-

putations increases according to n. Singularly perturbed sys-

tems can be decomposed into two subsystems, and we can

obtain two sub-control laws for each subsystem through SGA

method. Therefore, n1− and n2−dimensional integrals are

computed and the number of computations are decreased,

where n = n1 + n2. Thus, the near-optimal H∞ composite

control law consists of two optimal H∞ sub-control laws.

The contents of this paper are as follows. In section 2, sin-

gularly perturbed nonlinear systems with respect to perfor-

mance criteria are studied. We define Generalized-Hamilton-

Jacobi-Bellman(GHJB) equations for each subsystems. The

solutions of GHJB equations are obtained using the SGA

method and the composite H∞ control law is designed, and

we present the new algorithm for H∞ composite control

of singularly perturbed nonlinear systems using the SGA

method. In section 3, the proposed algorithm for the singu-

larly perturbed nonlinear systems is applied to a numerical

example. Finally, section 4 gives our conclusion.

2. Main Results
The solution of Hamilton-Jacobi-Bellman equations for non-

linear systems can be hardly found, thus we will find the

approximated solutions using successive Galerkin approxi-

mation. Singularly perturbed nonlinear system is decom-

posed into two subsystems in the spirit of the general theory

of singular perturbation. The H∞ sub-control laws are de-

signed for each subsystem using the SGA method, and the

closed-loop H∞ composite control law consists of two opti-

mal control laws for each subsystem.

2.1. H∞ Composite control for singularly perturbed

nonlinear systems

The infinite-time H∞ control problem considers a class of

singularly perturbed nonlinear systems described by the fol-

lowing differential equations:

α̇ = f1(α) + F1(α)α + g1(α)u + h1(α)ω (1)

εβ̇ = f1(α) + F1(α)β + g2(α)u + h2(β)ω (2)

z =

⎡
⎢⎣ l(α)

L(α)β

Du

⎤
⎥⎦ (3)

α(t0) = α0, β(t0) = β0
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with respect to the performance criterion:

J =

∫ ∞

0

(
zT z − γ2ωT ω

)
dt (4)

where α ∈ Rn1 , and β ∈ Rn2 are states, u ∈ Rm is a control

input, ω ∈ Rp is a exogenous disturbance, and ε is a small

positive parameter. We assume that f1 ∈ Rn1 , f2 ∈ Rn2 ,

F1 ∈ Rn1×n2 , F2 ∈ Rn2×n2 , g1 ∈ Rn1×m, g2 ∈ Rn2×m, h1 ∈
Rn1×p, h2 ∈ Rn2×p are Lipschitz continuous on a compact

set Ω ⊃ B(0), where B is a ball around the states [αT βT ]T .

We also assume that f1(t0) = 0 and f2(t0) = 0. In addition,

for simplification of development we assume as follows:

h2(α) = 0

The performance criterion (4) can be written in the equiva-

lent form:

J =

∫ ∞

0

(
lT l + βT LT Lβ + uT DT Du − γ2ωT ω

)
dt (5)

In the following, we solve slow and fast optimal control prob-

lems and combine their solutions to form a composite control.

uc = u∗
s + u∗

f (6)

The near-optimality of the composite control law is stated

in the following lemma.

Lemma 1

u∗(t) = uc(t) + O(ε), t ≥ t0

α(t) = αs(t) + O(ε), t ≥ t0

β(t) = αs(t) + αf (t) + O(ε), t ≥ t0

The proof of this lemma can be drawn from (Chow and Koko-

tovic, 1976, [4]]; Kokotovic et al., 1986, [3]).

Let us assume that the open-loop system (1-2) is a stan-

dard singularly perturbed system for every u ∈ B(u) ⊂ Rm,

that is, the equation

βs = −F−1
2 (αs) {f2(αs) + g2(αs)us} (7)

has a unique solution.

The slow time scale problem of order n1 is defined by elim-

inating βf and uf from (1-3) and (5) using (7). Then the

resulting slow time scale problem becomes optimal control

of the slow subsystem

α̇s = f0(αs) + gs(αs)us, αs(t0) = α0 (8)

with respect to the performance criterion

Js =

∫ ∞

0

{
l0(αs) + 2Ls(αs)us + uT

s Ds(αs)us

}
dt (9)

where

f0 = f1 − F1F
−1
2 f2

gs = g1 − F1F
−1
2 g2

l0 = lT l + fT
2 F−T

2 LT LF−1
2 f2

Ls = fT
2 F−T

2 LT LF−1
2 g2 .

Ds = DT D + gT
2 F−T

2 LLF−1
2 g2

From robust H∞ control theory [6], [7], it is well known

that if J∗
s (αs) is a unique positive-definite solution of the

Hamilton-Jacobi-Bellman equation

0 = ls +
∂J∗

∂αs

T

fs − 1

4

∂J∗
s

∂αs

T(
gsD

−1
s gT

s − γ−2h1h
T
1

)∂J∗
s

∂αs
(10)

with the boundary condition

J∗
s (0) = 0 (11)

then the H∞ control of the slow time scale problem is given

by

u∗
s = −D−1

s

(
LT

s +
1

2
gT

s
∂J∗

s

∂αs

)
(12)

and the exogenous disturbance of the worst case is given by

ω∗ =
γ−2

2
hT

1
∂J∗

s

∂αs
(13)

where

fs = f0 − gsD
−1
s LT

s

ls = l0 − LsD
−1
s LT

s

The fast time scale problem of order n2 is defined by freezing

the slow variable αs and shifting the equilibrium of the fast

subsystem to the origin.

εβ̇f = F2(αs)βf + g2(αs)uf (14)

βf (t0) = β0 + F−1
2 (α0){f2(α

0) + g2(α
0)us(t0)}

where βf = β − βs. The performance criterion of the fast

time scale problem is given by

Jf =

∫ ∞

0

{
βT

f LT (αs)L(αs)βf + uT
f DT Duf

}
dt (15)

where αs ∈ B is fixed parameter.

If J∗
f (βf ) is a unique positive-definite solution of the

Hamilton-Jacobi-Bellman equation

0 = βT
f LT Lβf +

∂J∗
f

∂βf

T

F2βf

−1

4

∂J∗
f

∂βf

T

g2(D
T D)−1gT

2

∂J∗
f

∂βf
(16)

with the boundary condition

J∗
f (0) = 0 (17)

then the H∞ control of the fast time scale problem is given

by

u∗
f = −1

2
(DT D)−1gT

2

∂J∗
f

∂βf
. (18)

A realizable composite control requires that the system

states αs and βf be expressed in terms of the actual sys-

tem states α and β. This can be achieved by replacing αs

by α and βf by β − βs so that

uc = −D−1
s (LT

s +
1

2
gT

s
∂J∗

s

∂αs
) − 1

2
(DT D)−1gT

2

∂J∗
f

∂βf

= −D−1
s (LT

s +
1

2
gT

s Gsα) − 1

2
(DT D)−1gT

2 Gf

[
β

+F−1
2 f2 − F−1

2 g2D
−1
s (LT

s +
1

2
gT

s Gsα)

]
(19)
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where ∂J∗
s /∂αs = Gsαs and ∂J∗

f /∂βf = Gfβf .

2.2. GHJB equations for singularly perturbed non-

linear systems

In order to obtain the H∞ composite control law uc, we need

to find the solutions, ∂J∗
s /∂αs and ∂J∗

f /∂βf , using succes-

sive Galerkin approximation.

Assumption

Ω is a compact set of Rn, and all states are bounded on Ω.

Under Assumption and by the help of [13], [14], [15], [16], we

can define the Generalized-Hamilton-Jacobi-Bellman equa-

tion for singular perturbed nonlinear systems which is de-

fined in the following.

Definition

If initial control laws, ũ
(0)
s : Rm × Ωs −→ Rm and

u
(0)
f : Rm × Ωf −→ Rm, are admissible and functions,

J
(i)
s : Rn1 × Ωs −→ Rn1 and J

(i)
f : Rn2 × Ωf −→ Rn2 ,

satisfy the following Generalized-Hamilton-Jacobi-Bellman

equations, written by GHJB(J
(i)
s , ũ

(i)
s ) = 0, namely

0 = ls +
1

4

∂J
(i−1)
s

∂αs

T(
gsD

−1
s gT

s − γ−2h1h
T
1

) ∂J
(i−1)
s

∂αs
(20)

+
∂J

(i)
s

∂αs

T

fs − 1

2

∂J
(i)
s

∂αs

T(
gsD

−1
s gT

s − γ−2h1h
T
1

) ∂J
(i−1)
s

∂αs

with boundary condition

J i
s(0) = 0 (21)

then ith slow control law is

ũ(i)
s = −1

2
D−1

s gT
s

∂J
(i−1)
s

∂αs
(22)

and GHJB(J
(i)
f , u

(i)
f ) = 0, namely

0 = βT
f LT Lβf +

1

4

∂J
(i−1)
f

∂βf

T

g2(D
T D)−1gT

2

∂J
(i−1)
f

∂βf

+
∂J

(i)
f

∂βf

T

F2βf − 1

2

∂J
(i)
f

∂βf

T

g2(D
T D)−1gT

s

∂J
(i−1)
f

∂βf
(23)

with boundary condition

J i
f (0) = 0 (24)

then ithe fast control law is

u
(i)
f = −1

2
(DT D)−1gT

2

∂J
(i−1)
f

∂βf
(25)

where i is iteration number.

2.3. Galerkin projections of the GHJB equations

In this section, we use Galerkin’s projection method to de-

rive approximate solutions to the GHJB equations on the

compact set, Ω. We find an approximate solution J
(i)
N to the

equation GHJB(J (i), u(i)) = 0 by letting

J
(i)
N (x) =

N∑
j=1

c
(i)
j φj(x) (26)

where the coefficients cj are constant in the infinite-time

case. Substituting this expression into the GHJB equation

results in an approximation error

error = GHJB(

N∑
j=1

c
(i)
j φj , u

(i)) . (27)

The coefficients cj are determined by setting the projection

of the error, (27) on the finite basis, {φj}N
1 , to zero for all

x ∈ Ω,

< GHJB(
N∑

j=1

c
(i)
j φj , u

(i)), φn >Ω= 0, n = 1, · · · , N. (28)

Then, (28) becomes N equations with N unknown constants.

To represent (28) by the matrix equations, we define

ΦN (x) ≡ (φ1(x), · · · , φN (x))T (29)

and let ∇ΦN be the Jacobian ΦN . If η : RN −→ RN is a

vectoer valued function, then we define the notation

< η, ΦN >Ω≡

⎡
⎢⎢⎣

< η1, φ1 >Ω · · · < ηN , φ1 >Ω

...
. . .

...

< η1, φN >Ω · · · < ηN , φN >Ω

⎤
⎥⎥⎦

where the inner product is defined as

< f, g >Ω≡
∫

Ω

f(x)g(x)dx (30)

and

JN ≡ cT
NΦN (31)

with

cN ≡ (c1, c2, · · · , cN )T . (32)

Given an initial control ũ
(0)
s , we compute an approximation

to its cost J
(0)
sN = c

T (0)
sN ΦsN where c

(0)
sN is the solution of

Galerkin approximation of GHJB equation (20), i.e.

Asc
(0)
sN + bs = 0 (33)

where

As = <∇ΦsNfs, ΦsN>Ωs+<∇ΦsN (gsũ
(0)
s + hω(0)), ΦsN>Ωs

bs = < ls, ΦsN>Ωs +< ũT (0)
s Dsũ

(0)
s − γ2ω(0)T ω(0), ΦsN>Ωs

We can compute the updated control law that is based on

the approximated solution, J
(i−1)
sN .

ũ(i)
s = −1

2
gT

s
∂J

(i−1)
s

∂αs
= −1

2
gT

s ∇ΦT
sNc

(i−1)
sN (34)

ω(i) =
γ−2

2
hT

1
∂J

(i−1)
s

∂αs
=

γ−2

2
hT

1 ∇ΦT
sNc

(i−1)
sN (35)

Then we can obtain the approximation

J
(i)
sN = c

T (i)
sN ΦsN (36)
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where c
(i)
sN is the solution of

Asc
(i)
sN + bs = 0 (37)

where

As = <∇ΦsNfs, ΦsN >Ωs −1

2
<∇ΦsN (gsD

−1
s gT

s

−γ−2h1h
T
1 )∇ΦT

sNc
(i−1)
sN , ΦsN >Ωs

bs = < ls, ΦsN >Ωs +
1

4
< c

T (i−1)
sN ∇ΦsN (gsD

−1
s gT

s

−γ−2h1h
T
1 )∇ΦT

sNc
(i−1)
sN , ΦsN >Ωs

and i is iteration number.

Similarly, given an initial control u
(0)
f , we can compute an

approximation to its cost J
(0)
fN = c

T (0)
fN ΦfN where c

(0)
fN is the

solution of Galerkin approximation of GHJB equation for

the fast-time case.

The following lemma states the existence of unique solutions,

c
(i)
sN and c

(i)
fN of Galerkin approximation.

Lemma 2

Suppose that {φsj}N
1 and {φfj}N

1 are linearly independent

respectively, then As and Af are invertible. Furthermore,

existence of the unique solutions is guaranteed.

The proof of this lemma can be drawn from (Randal W.

Beard, 1995, [13]).

2.4. The new algorithm of H∞ composite control for

singularly perturbed nonlinear systems

The following algorithm shows that the H∞ composite con-

trol can be designed by two closed-loop control laws of fast-

and slow-subsystem using the SGA method for singularly

perturbed nonlinear systems.

Algorithm

Initial Step

Compute

As = <∇ΦsNfs, ΦsN>Ωs+<∇ΦsN (gsũ
(0)
s + hω̃(0)), ΦsN>Ωs

bs = < ls, ΦsN>Ωs +< ũT (0)
s Dsũ

(0)
s − γ2ω̃(0)T ω̃(0), ΦsN>Ωs

and

Af = <∇ΦfNF2βf , ΦfN >Ωf+<∇ΦfNg2u
(0)
f , ΦfN >Ωf

bf = < βT
f LT Lβf , ΦfN >Ωf+< u

T (0)
f DT Du

(0)
f , ΦfN >Ωf

Find c
(0)
sN and c

(0)
fN satisfying the following linear equations:

Asc
(0)
sN + bs = 0, Afc

(0)
fN + bf = 0

Set i = 1.

Iterative Step

Improved controllers are given by

ũ
(i)
sN = −1

2
D−1

s gT
s ∇ΦT

sNc
(i−1)
sN

u
(i)
fN = −1

2
(DT D)−1gT

2 ∇ΦT
fNc

(i−1)
fN

Compute

As = <∇ΦsNfs, ΦsN >Ωs −1

2
<∇ΦsN (gsD

−1
s gT

s

−γ−2h1h
T
1 )∇ΦT

sNc
(i−1)
sN , ΦsN >Ωs

bs = < ls, ΦsN >Ωs +
1

4
< c

T (i−1)
sN ∇ΦsN (gsD

−1
s gT

s

−γ−2h1h
T
1 )∇ΦT

sNc
(i−1)
sN , ΦsN >Ωs

and

Af = <∇ΦfNFsβf , ΦfN >Ωf

−1

2
<∇ΦfNg2R

−1gT
2 ∇ΦT

fNc
(i−1)
fN , ΦfN >Ωf

bf = <βT
f Qβf , ΦfN >Ωf

+
1

4
<c

T (i−1)
fN ∇ΦfNg2R

−1gT
2 ∇ΦT

fNc
(i−1)
fN , ΦfN >Ωf

Find c
(i)
sN and c

(i)
fN satisfying the following linear equations:

Asc
(i)
sN + bs = 0

Afc
(i)
fN + bf = 0

Set i = i + 1.

Final Step

The H∞ composite control law is

uc = −D−1
s (LT

s +
1

2
gT

s
∂J∗

s

∂αs
) − 1

2
(DT D)−1gT

2

∂J∗
f

∂βf

= −D−1
s (LT

s +
1

2
gT

s Gsα)

−1

2
(DT D)−1gT

2 Gf

[
β + F−1

2 f2

−F−1
2 g2D

−1
s

(
LT

s +
1

2
gT

s Gsα
)]

where ∇ΦT
sNcsN = Gsαs and ∇ΦT

fNcfN = Gfβf .

The following lemma shows that the solution of Galerkin ap-

proximation converges to solution of Generalized-Hamilton-

Jacobi-Bellman equation.

Lemma 3

For any small positive constant α, we can choose N and i

sufficiently large to satisfy that

‖J∗ − J
(i)
N ‖ < α (38)

The proof of this lemma can be easily drawn from (Randal

W. Beard, [13]).

3. A Numerical Example
In this section, we apply the proposed algorithm to a numer-

ical example. Consider the fifth-order numerical example

which is the standard singularly perturbed nonlinear sys-

tem (1-3). The states variables are α = [xT
1 xT

2 xT
3 ]T and

β = [xT
4 xT

5 ]T , and the control variable is u = [uT
1 uT

2 ]T .

α̇ = f1(α) + F1(α)β + g1(α)u + h1(β), α(t0) = α0

εβ̇ = f2(α) + F2(α)β + g2(α)u, β(t0) = β0
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Where the problem matrices have the following values.

f1(α) =

⎡
⎢⎣ −0.04611x1

−2.146x1 − x1x3

x1x2 − 2.146x3

⎤
⎥⎦ ,

F1(α) =

⎡
⎢⎣ −16.6x3 16.6x2

0.146 0

0 0.146

⎤
⎥⎦ ,

f2(α) =

[
0.146x2 + 0.068x1x3

−0.068x1x2 + 0.146x3

]
,

F2(α) =

[
−0.00225 0

0 −0.00225

]
,

g1(α) = 0, g2(α) = 0.0399I2

h1(α) = [1 0 0]T , ε = 0.000262

In this paper, we assume that the exogenous disturbance,

ω = 130sin(148pit). The simulation results are presented

with initial states, x0 = [10 − 0.07 0.04 15 47]T , in the

figures 1-6 where the dashed lines (– –) are the trajectories

that obtained from full-order SGA method and the sold lines

(—–) are the trajectories that obtained from the proposed

algorithm. The figure 6 shows that the performance criterion

trajectory of the proposed algorithm is better than that of

the full-order SGA method, because errors of the full-order

SGA method are bigger than those of the proposed algo-

rithm. In the full-order SGA method, ten-dimensional basis

are used and five-dimensional integrals of 10×(1+10+100) =

1110 times are performed. But, in the proposed algorithm,

we can use only six-dimensional basis and compute three-

dimensional integrals of 6 × (1 + 6 + 36) = 248 times for

slow-time scale subsystem, and compute two-dimensional in-

tegrals of 3×(1+3+9) = 39 times based on three-dimensional

basis for fast-time scale subsystem in parallel. Therefore, the

computational complexity is greatly reduced.
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using the successive Galerkin approximation(SGA). The dif-

ficulty of the SGA method is a computational complexity,

but in the proposed algorithm, n−dimensional integrals are

reduced to n1− and n2−dimensional integrals and the com-

putational complexity according to n states is decreased to

n1 and n2 states. The presented simulation results for singu-

larly perturbed nonlinear systems show that the performance

trajectories of the proposed algorithm is better than those of

the full order SGA method. In addition, it should be noted

that the proposed algorithm are more effective than the full

order SGA method.
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