• Title/Summary/Keyword: singular integral

Search Result 168, Processing Time 0.024 seconds

ON THE CONVERGENCE OF QUADRATURE RULE FOR SINGULAR INTEGRAL EQUATIONS

  • KIM, SEKI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.4 no.2
    • /
    • pp.85-97
    • /
    • 2000
  • A quadrature rule for the solution of Cauchy singular integral equation is constructed and investigated. This method to calculate numerically singular integrals uses classical Jacobi quadratures adopting Hunter's method. The proposed method is convergent under a reasonable assumption on the smoothness of the solution.

  • PDF

Singular Cell Integral of Green's tensor in Integral Equation EM Modeling (적분방정식 전자탐사 모델링에서 Green 텐서의 특이 적분)

  • Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • We describe the concept of the singularity in the integral equation of electromagnetic (EM) modeling in comparison with that in the integral representation of electric fields in EM theory, which would clarify the singular integral problems of the Green's tensor. We have also derived and classified the singular integrals of the Green's tensors in 3-D, 2.5-D and 2-D as well as in the thin sheet integral equations of the EM scattering problem, which have the most important effect on the accuracy of the numerical solution of the problems.

  • PDF

THE DISCRETE SLOAN ITERATE FOR CAUCHY SINGULAR INTEGRAL EQUATIONS

  • KIM, SEKI
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.81-95
    • /
    • 1998
  • The superconvergence of the Sloan iterate obtained from a Galerkin method for the approximate solution of the singular integral equation based on the use of two sets of orthogonal polynomials is investigated. The discrete Sloan iterate using Gaussian quadrature to evaluate the integrals in the equation becomes the Nystr$\ddot{o}$m approximation obtained by the same rules. Consequently, it is impossible to expect the faster convergence of the Sloan iterate than the discrete Galerkin approximation in practice.

  • PDF

COMMUTATORS OF SINGULAR INTEGRAL OPERATOR ON HERZ-TYPE HARDY SPACES WITH VARIABLE EXPONENT

  • Wang, Hongbin
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.713-732
    • /
    • 2017
  • Let ${\Omega}{\in}L^s(S^{n-1})$ for s > 1 be a homogeneous function of degree zero and b be BMO functions or Lipschitz functions. In this paper, we obtain some boundedness of the $Calder{\acute{o}}n$-Zygmund singular integral operator $T_{\Omega}$ and its commutator [b, $T_{\Omega}$] on Herz-type Hardy spaces with variable exponent.

JACOBI SPECTRAL GALERKIN METHODS FOR VOLTERRA INTEGRAL EQUATIONS WITH WEAKLY SINGULAR KERNEL

  • Yang, Yin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.247-262
    • /
    • 2016
  • We propose and analyze spectral and pseudo-spectral Jacobi-Galerkin approaches for weakly singular Volterra integral equations (VIEs). We provide a rigorous error analysis for spectral and pseudo-spectral Jacobi-Galerkin methods, which show that the errors of the approximate solution decay exponentially in $L^{\infty}$ norm and weighted $L^2$-norm. The numerical examples are given to illustrate the theoretical results.

ON THE NUMERICAL SOLUTION OF INTEGRAL EQUATIONS OF THE SECOND KIND WITH WEAKLY SINGULAR KERNELS

  • Fahmy, M.H.;Abdou, M.A.;Darwish, M.A.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.503-512
    • /
    • 1999
  • The purpose of this paper is to introduce the (Toeplitz) quadrature method for solving fredholm integral equations of the second kind with mildly singular kernels. We are presented some numerical examples for the computation of the error estimate using the MathCad package.

HYPONORMAL SINGULAR INTEGRAL OPERATORS WITH CAUCHY KERNEL ON L2

  • Nakazi, Takahiko
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.787-798
    • /
    • 2018
  • For $1{\leq}p{\leq}{\infty}$, let $H^p$ be the usual Hardy space on the unit circle. When ${\alpha}$ and ${\beta}$ are bounded functions, a singular integral operator $S_{{\alpha},{\beta}}$ is defined as the following: $S_{{\alpha},{\beta}}(f+{\bar{g}})={\alpha}f+{\beta}{\bar{g}}(f{\in}H^p,\;g{\in}zH^p)$. When p = 2, we study the hyponormality of $S_{{\alpha},{\beta}}$ when ${\alpha}$ and ${\beta}$ are some special functions.

The intensity of a singular near-tip field around the vertex of a three-dimensional notch or wedge (3 차원 놋치 및 쐐기의 응력 강도계수)

  • Lee, Yong-Woo;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.157-162
    • /
    • 2003
  • Singular stress fields around three-dimensional wedges are examined, and the near-tip intensity is calculated via the two-state M-integral with the aid of the domain integral representation. A numerical example demonstrates the effectiveness and accuracy of the present scheme for computing the stress intensities of singular stresses near the generic three-dimensional wedges.

  • PDF