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ABSTRACT. In this paper, the boundedness for some multilinear operators generated by
singular integralv operators and Lipschitz functions on Hardy and Herz-type spaces are
obtained.

1. Introduction

Let T be a Calderén-Zygmund operator, a well-known result of Coifman,
Rochberg and Weiss (see [6]) states that the commutator [b,T](f) = T(bf) —
bT'(f)(where b € BMO(R")) is bounded on LP(R"™) for 1 < p < oo; Chanillo(see
[1]) proves a similar result when T is replaced by the fractional integral operator.
However, it was observed that [b,T] is not bounded, in general, from HP(R") to
LP(R™) for 0 < p < 1. But, the boundedness hold if b belongs to the Lipschitz spaces
Lips(R™)(see[11]). This show the difference of b € BMO(R™) and b € Lipg(R").
In [10][14], the LP(p > 1)-boundedness of the commutators when b is the Lipschitz
function are obtained. The purpose of this paper is to establish the boundedness
properties for some multilinear singular integral operators generated by some sin-
gular integral operators and Lipschitz functions on Hardy and Herz-type spaces.

2. Preliminaries and results

In this paper, we will study a class of multilinear operators related to some
singular integral operators, whose definitions are following. Let m be a positive
integer and A be a function on R". Set

R77L+1(A;~T7y) = A(l‘) - Z 7D7A(y)(x - y)'y

[v|<m
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and
Qmit(Asz,y) = Ru(a) = 3 DVA@)(x —y).

[v|=m

Fixed § > 0 and € > 0. Let Ts5 : S — S’ be a linear operator. Ty is called a singular
integral operator if there exists a locally integrable function K(z,y) on R™ x R™
such that
T5(f)(x) = | K(z,y)f(y)dy
R’I’L
for every bounded and compactly supported function f. Where K satisfies:

K (2,y)| < Clz —y| "
and
K (y.2) = K (z.2)] + |K(2,y) = K(2,2)| < Cly — 2|z 2 "~

if 2|y—z| < |z—2z|. The multilinear operator related to the singular integral operator
Ty is defined by

Rm+1(A; %y)
|z —y[™

T (P = [ K(,9) £ )y

We also consider the variant of Tg4, which is defined by

an-{-l(A; Z, y)
Rz —ylm

T (f)(x) = K (z,y)f(y)dy.

Note that when m = 0, Tg“ is just the commutator of the singular integral
operators Ts and A (see [1], [6], [10], [11], [14]), while when m > 0, it is non-trivial
generalizations of the commutator. It is well known that multilinear operators
are of great interest in harmonic analysis and have been widely studied by many
authors when A has derivatives of order m in BMO(R™)(see [3], [4], [5], [7])- In [2],
author obtains the LP(p > 1)-boundedness of multilinear singular integral operators
generated by singular integrals and Lipschitz functions. The main purpose of this
paper is to discuss the boundedness properties of the multilinear singular integral
operators on Hardy and Herz-type spaces. Let us first introduce some definitions
(see [8], [9], [12], [13], [15]). Throughout this paper, M (f) will denote the Hardy-
Littlewood maximal function of f, @ will denote a cube of R™ with side parallel to
the axes. Denote the Hardy spaces by HP(R™). It is well known that H?(R™)(0 <
p < 1) has the atomic decomposition characterization(see [8], [15]). For 8 > 0, the
Lipschitz space Lipg(R™) is the space of functions f such that(see [14])

Ifllzips = sup  |f(z+h) = f(@)|/|h])° < .
z,h€R™, h>0
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Definition 1. Let 0 < p,g < o0, @« € R and B, = {x € R" : |z| < 2F},
Cx = By \ Bi—1 for k € Z. For a measurable function f on R", let my(A, f) =
{x € Ar : |f(x)] > A} for k € Z and mp(\, f) = mp(\, f) for £ € N and
mo(A, f) = {z € By : |f(x)] > A}

(1) The homogeneous Herz space is defined by
KGP(RY) = {f € Lipe(R*\AO}) : [ ]|k < 00},

where

1/p
IfIKM[Z 2% ] :

k=—o00

(2) The nonhomogeneous Herz space is defined by

KgP(R") = {f € Lig(R") : |Ifll kg < 00},

where

[es} 1/p
||fHK;"" = lz 2kap||ka”l[>lq + ||fXBo||gq‘| .

(3) The homogeneous weak Herz space is defined by
W KPP(R") = {f is measurable on R" : || f||y.ga»r < 00},
where
1/p
| Fllwaeg> = sup A l > 2kermy (), f)P/q] ;
k=—o00
(4) The nonhomogeneous weak Herz space is defined by
WEKZP(R") = {f is measurable on R" : || f||yy go»r < 00},

where

1/p
I fllwror = iup)\ [Z 28PN, f)p/q] .
>0

k=0
Definition 2. Let « € R, 0 < p,q < 0.
(1) The homogeneous Herz type Hardy space is defined by
H-KgP(R") ={f € S'(R"): G(f) € K" (R")},

and
[fI-H - K& = [|GUf)||.kows
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(2) The nonhomogeneous Herz type Hardy space is defined by
HEKJP(R") ={f € S'(R") : G(f) € KZP(R™)},

and

[fllzrrcg = NG xcgors

where G(f) is the grand maximal function of f. The Herz type Hardy spaces have
the atomic decomposition characterization.

Definition 3. Let « € R, 1 < ¢ < oo. A function a(z) on R" is called a central
(ar, q)-atom (or a central (a, ¢)-atom of restrict type), if

(1
2
(3) Jpnalz)zVdz =0 for |y| < [a—n(l —1/q)].

) Suppa C B(0,r) for some r > 0 (or for some r > 1),
) llallze < |B(0,r)[*/,
)

Lemma 1([13]). Let0 < p < oo, 1 < ¢ < oo and a>n(1—1/q). A temperate dis-
tribution f belongs to HK;P(R"™)(or HKP(R™)) if and only if there exist central
(v, q)-atoms (or central (o, q) -atoms of restrict type) a; supported on Bj = B(0,27)
and constants \j, > |N\;[P < oo such that f =372 | Njaj(or f =372, Na5)in
the S'(R™) sense, and

1/p

1F ricor C oo 1 fllarge) ~ [ D AP
i

Now we can state our results as following.

Theorem 1. Let 0 < <1,0<6 <n—pf and DA € Lipg(R"™) for all v with
|v| = m. Suppose that T is bounded from LP(R™) to LY(R™) for any p,q € (1, +0o0)
and 1/q=1/p— (6 + B)/n. Then

(a) If max(n/(n + §).n/(n+€) < p <1, 1/p—1/g = (+5)/n, then T{* is
bounded from HP(R"™) to L1(R™);

(b) If0 < B < min(1,&), then T{* is bounded from H™ ("+9)(R") to L™/ ("=9)(R");

() If 0 < B < min(l,e), then T is bounded from H™"+P)(R") to weak

Theorem 2. Let 0 < < 1,0<d<n—0p,0<p<oo,1<qqg < o,
1/q1 — 1/q2 = (6 + B)/n and DYA € Lipg(R"™) for all |y| = m with |y] = m.
Suppose that T{* is bounded from LP(R™) to LI(R™) for any p,q € (1,4+00) and
1/¢=1/p—4/n. Then
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(a) Ifn(1-1/q1) < o <min(n(1—1/q1)+B,n(1—1/q1)+e), then T is bounded
from HKg‘l’p(R") to Kg;p(R");

b) If 0 < p < 1 and 0 < B < min(l,e), then T2 is bounded from
5
HK;ll(l*l/m)Jrﬁm(Rn) to K;’;(lfl/m)JrB,p(Rn);
) If0 < p < 1 and 0 < B < min(l,e), then TH is bounded from
5
Hkgll(l—l/m)-i-ﬁJ?(Rn) to WK;Z<1_1/Q1)+ﬂ7p(Rn).

Remark. Theorem 2 also holds for the nonhomogeneous Herz and Herz type Hardy
space.
3. Proofs of theorems

We begin with a preliminary lemma.

Lemma 2([5]). Let A be a function on R™ such that DYA € L] (R") for |y| =m
and some q > n. Then

1/q
1
|Rm(As2,y)| < Clz —y[™ ( D”A(Z)qu2> ;
Mz:: 1Q(@,9)| /@)

where Q(z,y) is the cube centered at x and having side length 5v/n|z — y|.

Proof of Theorem 1. (a) It suffices to show that there exists a constant C' > 0 such
that for every HP-atom a, there is

|75 (a)| s < C.

Let a be a HP-atom, that is that a supported on a cube @ = Q(xo,7), ||a||r> <
|Q|~/? and fR" a(x)zVdx = 0 for |y| < [n(1/p —1)]. We write

/ T3 () (x)|9dz = </|_ - +/_ ) ) T2 (a)(x)|%de = I + I1.

For I, taking ¢; > g and 1 < p; < n/(d+ B) such that 1/p; —1/q1 = (0 + B)/n, by
Hélder’s inequality and the (LP', L% )-boundedness of 7§, we have

I < O|TH @) 4w 12Q1" /" < Cllal|g,, Q' < C.
To obtain the estimate of I, we need to estimate T¢ (a)(z) for z € (2Q)°. Let Q =

5v/nQ and A(z) = A(z) — 2y l=m %(D"’A)@x”f. Then R, (A;z,y) = Rm(A; z,y)
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and DYA(y) = DY A(y) — (DY A)g. We write, by the vanishing moment of a,

a(y)dy

|z —y[™ |z — wo[™

Tg“(a)(:p) _ /n [K(x,y)Rm(;l;x,y) B K(Jiyxo)Rm(jl;x,xo)

_ Z K(z,y)(z - )'*D”A(y)a(y)dy.

= Rn |z — y|™

By Lemma 2 and the following inequality
1 8 8
[b(z) = bl < a s, 1bl| Lips |2 = Y7 dy < [1b]| Lips (|2 — 20| +1)7,

we get
[Ron(As2,9)] < D 1DV Allip, (J& =yl + )™+

[v|=m

By the formula (see [5]):

Rm(;l;:my) - R, A x,x0) Z R —n|( D"fl;mo,y)(a: —x9)",

\n\<m

and note that |z — y| ~ |z — x| for y € Q and x € R™ \ @), we obtain

A oAl ly — 0| ly — @0l
‘T5 (a)(x)| < C Z HD A||Lwa/Q |:|x_x0|n+15,@ + |x_x0‘n+67575

|a]=m

|y — o ™A1 ly — xol?
+ Z ‘.73 _x0|n+m—|n|—6 + ‘J} _xoln_(s |a(y)|dy

[nl<m
|Q|B/n+1—1/p |Q|6/n+171/p
< C Z 1D Al Lipg [ |z — 2|0 + |z — ao|nte—0-F

[v|=m
Thus
UEEED S NN O[T
=1 2k+1Q\2kQ
< o X 104, Z[qunu/p—mwvn)+2kqn(1/p—<n+e)/n>
yl=m k=1
< o XAy, | .

[v|=m
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which together with the estimate for I yields the desired result.
(b) We need only prove that there exists a constant C' > 0 such that for every
H"™/("+P)_atom a supported on Q = Q(xo,), there is

||T(§4(a)| /sy < C.

We write

R R Y
n |z—xo|<2r |z—z0|>27

For J, by the following equality

| T3 (a) ()| =D da == J+JJ.

1

Quis(Ai) = Bonia (i)~ Y 30— ) (D7A(&) — D7 AG),
[v|=m
we have
(T (a)(@)] < |T§ (@)(@)| + C Z/ ‘DWA y|n Ol

lv|=

thus, 7§ is (L?, L9)-bounded by [10][14], where 1 < p < n/(§ + ) and 1/q =
1/p— (6 + )/n. We see that

T n/(n—34) —n/((n— n/(n—3§ —n/((n—
J < C|ITA(a) |20 Q= (1=90) < ¢fja| 2,9 |Q1=7/ (=) < ¢,

< 1
To obtain the estimate of J.J, we denote that A(z) = A(x) =32, =, - (D7A)2q27.
!

Then Q.,(4;z,y) = Qm(fl;x,y). We write, by the vanishing moment of a and
1
Quust(Ai,9) = Ron(Ai2,) = S (0 = 97D Ala), for o € (2Q)°,

K (z,y)Rm(4; 2, y)

F@@ = | |x—y\m aly)dy
_ Z K(z, y)ﬁ”i‘l;}n( y)va(y)dy
lvl=
_ K(a:,mRm(A;x,y)_K(x,xomm(ﬁ;x,xo) .
-, l o=yl o — ol ] (s

B Z ,y' /n [ Y-y K(x,xo)(xiﬂo)v] D A(x)a(y)dy.

= =T 2 = w0l

Then, similar to the proof of (a), we obtain, for z € (2Q)°

A —-B/n A |Q|1/n ‘Q|s/n
|T6 (a)(x)| < C‘Q| Z ||D ||Lip,3 |$ — 1‘0|”+1_6—ﬂ + |5L‘ — xo‘n_i'_s_(s_ﬁ

[y|=m
i Q"™ QI
DA .
+ | ()] (z EPNTES T + |z — x| o0
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Thus

n/(n—5)
JI<C Y DV AllLy, 3 [anw—l)/(n—é) + anw—e)/(n—a)} <c,

lyl=m k=1

which together with the estimate for J yields the desired result.
(¢) By the following equality

Roa(Ai,) = Qua(Aizg) + 3 (@ =0) (D7 Alw) — D7AG),

we get

TA() )| < |TA(S \+cz/ \DA y|n5()|f()|dy

lv|=

By (b) and [11, Theorem 3.1], we obtain

[{z € R" : T (f)(w) > A}
< Hze R T(f)(@) > A2}

D’YA —D7A
een Z/ A= T )y > 3

Ivl=
< C(||f|‘Hﬂ/(n+ﬁ)/A)n/ n— 5)'

This completes the proof of Theorem 1. O

Proof of Theorem 2. (a) Let f € HK(‘;‘I’p(R") and f(z) = 372 Ajaj(x) be the
atomic decomposition for f as in Lemma 1. We write

p
9] k—3
T3 (I op = gkep IMHITS (@) x| oo
K
k=—o00 Jj=—00
oo oo P
+ >0 227 L ST T (a) x| e
k=—o00 j=k—2

= L;+ Lo.
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For Ls, by the (L9, L%2) boundedness of T4, we have

(o) o0 P
Ly < C Y 2 [ 3 lllagllen
k=—o0 j=k—2

O Nl (S22t} 0<p <

) ) . L \P/P
Ol (2 o 20-0) (S22 2=02) 0 p>1

C Y W < Ol

j=—c0

IA

For L,, similar to the proof of Theorem 1(a), we have, for z € Cy, j < k — 3,

BB |Bje/n
@l < ¢ (BE+ J2E [ o

|$|n75

C <2j(ﬁ+n(171/q1)fa)|x|5fn + 2j(€+n(1*1/q1)*a)|x|5+ﬁfnfs) '

IN

Thus

Al < —ka (G—k)(B4+n(1-1/q1)—) (j—k)(e+n(1—1/q1)—c)
||T5 (aJ)XkHLQZ < (C2 2 +2

and
0o k—3
Lo< 0% (30 U mOsm=a) Gk 2
k=—0c0 j=—00
n 2<j—k>(w+n<1—1/q1>—a>)p
CX5 o PSR (2001
+2U=R)(1/2+n(1=1]/q1)~a) | 2(J—k)(7+"(1_1/(h)_0‘))p’ 0<p<l1
=) Tl [TiLe (20 )
1+2Gi—k)(1/24n(1-1/q1)—a) 4 2(jfk)(v+n(1*1/%)*a>)] , p>1
§ C Z ‘)‘J|pgc‘|f||};{K%p

j=—o00

These yield the desired result.

(b) Let f € HI.(;Ll(l*l/ql)Jrﬁ’p(R") and f(z) = Y02 Aja;(z) be the atomic de-

j=—o0
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composition for f as in Lemma 1. We write

P
') k—3
”Té( )”Kn(l 1/q1)+8.,p < Z Qkp(n(lil/ql)+ﬁ) Z ‘)‘j|‘T(§4(aj)Xk||L‘12
k=—oc0 j=—00
(o) o0 N P
n Z okp(n(1-1/q1)+8) Z \)\j|||T5A(aj)Xk||qu
k=—o0 j=k—2
= M+ M.

For My, by the (L%, L92) boundedness of Tg“, we have

M, < C Z okp(n(1-1/q1)+5) Z 1A las]| Lo

k=—o0 j=k—2
oo Jj+2
<y |/\jp< 3 2(kj)p(n(11/q1)+6)>
j—foo k=—oc0
<

DRI < O g -ssa

j=—o00

For My, similar to the proof of Theorem 1(b), we have, for z € Cy, j < k — 3,

75 (ag)(@)] < CHZ 1D AllLip, (xlfjf/:ﬂ+ |x||nBjE|€/:B>/Rn la; (y)|dy
i
+0 3 1D (ol + 255 [
=
< 0 52 |10 Al (s + e )

v

DA <|x|27jfr11i)ﬁ . |x2,fii) 5) ]
Thus

My < C Z 1D AllLips

[vl=m

P
>0 2i(1-8) 9i(e=B)

. kp(n(1—1 +3) kn

y  2hrin(t/a) E NI reri=s=p) T grere—sp) | 2 o/

k=—o0 Jj=—00
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< Y DA, S NP Y (gp(lfﬁ)(jfk)+2p(6*ﬁ)(i*k)>
yl=m j=—o0 k=j+3

< C Z ||D7A||Lipg Z ‘)‘j|p < CHfHII){K(’;L(lfl/ql)%»ﬁ,p'
[yl=m j=—oo '

These yield the desired result.
(c) We know the following inequality

A ()] < [TA( |+c§j/ 'DWA W DY AW, £y ay.

[v[=m

Thus, by (b) and [11, Theorem 3.2.], we get

||T(§4(f)”WK;1(1*1/q1)+ﬁ,p

< ||T<§4(f)”WK”(1*1/q1)+ﬁ,p

lvl=

Rn WK;L(lfl/q1)+ﬁ,P

< ClIf] |H}'<;‘1(1*1/"1’+5*P'

This finishes the proof of Theorem 2. 0

4. Examples

1. Calderén-Zygmund singular integral operator.
Let T be the Calderén-Zygmund operator defined by(see [8], [15])

T(f)(x) = . K(z,y)f(y)dy,
the multilinear operator related to T is defined by
Ry1(4; 2,
14(0)w) = [ SR o) )y

Then it is easily to see that T satisfies the conditions in Theorem 1 and 2
with 6 = 0.

2. Fractional integral operator with rough kernel.
For 0 < § < n, let Ts be the fractional integral operator with rough kernel
defined by(see [2], [7])

T = [
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the multilinear operator related to Ty is defined by

T () = [ Wﬂu — )/ (w)dy,

where € is homogeneous of degree zero on R", [g,_, Q(z')do(z') = 0 and
Q € Lip.(S™"1) for 0 < ¢ < 1, that is there exists a constant M > 0 such
that for any z,y € S" 1, |Q(z) — Q(y)| < M|z — y|*. Then T} satisfies the
conditions in Theorem 1 and 2.

. Riesz potential operator.

Let 0 < § < n, the Riesz potential operator is defined by(see [1], [14])

R (@)

go |z —y|n=0

the multilinear operator related to I is defined by

e - | Boeildi,y) g,

|l — y|m+n76

Then Is satisfies the conditions in Theorem 1 and 2.
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