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Abstract. In this paper, the boundedness for some multilinear operators generated by

singular integralv operators and Lipschitz functions on Hardy and Herz-type spaces are

obtained.

1. Introduction

Let T be a Calderón-Zygmund operator, a well-known result of Coifman,
Rochberg and Weiss (see [6]) states that the commutator [b, T ](f) = T (bf) −
bT (f)(where b ∈ BMO(Rn)) is bounded on Lp(Rn) for 1 < p < ∞; Chanillo(see
[1]) proves a similar result when T is replaced by the fractional integral operator.
However, it was observed that [b, T ] is not bounded, in general, from Hp(Rn) to
Lp(Rn) for 0 < p ≤ 1. But, the boundedness hold if b belongs to the Lipschitz spaces
Lipβ(Rn)(see[11]). This show the difference of b ∈ BMO(Rn) and b ∈ Lipβ(Rn).
In [10][14], the Lp(p > 1)-boundedness of the commutators when b is the Lipschitz
function are obtained. The purpose of this paper is to establish the boundedness
properties for some multilinear singular integral operators generated by some sin-
gular integral operators and Lipschitz functions on Hardy and Herz-type spaces.

2. Preliminaries and results

In this paper, we will study a class of multilinear operators related to some
singular integral operators, whose definitions are following. Let m be a positive
integer and A be a function on Rn. Set

Rm+1(A;x, y) = A(x)−
∑
|γ|≤m

1
γ!

DγA(y)(x− y)γ
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and
Qm+1(A;x, y) = Rm(x)−

∑
|γ|=m

DγA(x)(x− y)γ .

Fixed δ ≥ 0 and ε > 0. Let Tδ : S → S′ be a linear operator. Tδ is called a singular
integral operator if there exists a locally integrable function K(x, y) on Rn × Rn

such that
Tδ(f)(x) =

∫
Rn

K(x, y)f(y)dy

for every bounded and compactly supported function f . Where K satisfies:

|K(x, y)| ≤ C|x− y|−n+δ

and

|K(y, x)−K(z, x)|+ |K(x, y)−K(x, z)| ≤ C|y − z|ε|x− z|−n−ε+δ

if 2|y−z| ≤ |x−z|. The multilinear operator related to the singular integral operator
Tδ is defined by

TA
δ (f)(x) =

∫
Rn

Rm+1(A;x, y)
|x− y|m

K(x, y)f(y)dy.

We also consider the variant of TA
δ , which is defined by

T̃A
δ (f)(x) =

∫
Rn

Qm+1(A;x, y)
|x− y|m

K(x, y)f(y)dy.

Note that when m = 0, TA
δ is just the commutator of the singular integral

operators Tδ and A (see [1], [6], [10], [11], [14]), while when m > 0, it is non-trivial
generalizations of the commutator. It is well known that multilinear operators
are of great interest in harmonic analysis and have been widely studied by many
authors when A has derivatives of order m in BMO(Rn)(see [3], [4], [5], [7]). In [2],
author obtains the Lp(p > 1)-boundedness of multilinear singular integral operators
generated by singular integrals and Lipschitz functions. The main purpose of this
paper is to discuss the boundedness properties of the multilinear singular integral
operators on Hardy and Herz-type spaces. Let us first introduce some definitions
(see [8], [9], [12], [13], [15]). Throughout this paper, M(f) will denote the Hardy-
Littlewood maximal function of f , Q will denote a cube of Rn with side parallel to
the axes. Denote the Hardy spaces by Hp(Rn). It is well known that Hp(Rn)(0 <
p ≤ 1) has the atomic decomposition characterization(see [8], [15]). For β > 0, the
Lipschitz space Lipβ(Rn) is the space of functions f such that(see [14])

‖f‖Lipβ
= sup

x,h∈Rn, h>0
|f(x + h)− f(x)|/|h|β < ∞.
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Definition 1. Let 0 < p, q < ∞, α ∈ R and Bk = {x ∈ Rn : |x| ≤ 2k},
Ck = Bk \ Bk−1 for k ∈ Z. For a measurable function f on Rn, let mk(λ, f) =
|{x ∈ Ak : |f(x)| > λ}| for k ∈ Z and m̃k(λ, f) = mk(λ, f) for k ∈ N and
m̃0(λ, f) = |{x ∈ B0 : |f(x)| > λ}|.

(1) The homogeneous Herz space is defined by

·Kα,p
q (Rn) = {f ∈ Lq

loc(R
n \ {0}) : ||f ||·Kα,p

q
< ∞},

where

‖f‖·Kα,p
q

=

[ ∞∑
k=−∞

2kαp||fχk||pLq

]1/p

;

(2) The nonhomogeneous Herz space is defined by

Kα,p
q (Rn) = {f ∈ Lq

loc(R
n) : ||f ||Kα,p

q
< ∞},

where

‖f‖Kα,p
q

=

[ ∞∑
k=1

2kαp||fχk||pLq + ||fχB0 ||
p
Lq

]1/p

.

(3) The homogeneous weak Herz space is defined by

W ·Kα,p
q (Rn) = {f is measurable on Rn : ||f ||W ·Kα,p

q
< ∞},

where

‖f‖W ·Kα,p
q

= sup
λ>0

λ

[ ∞∑
k=−∞

2kαpmk(λ, f)p/q

]1/p

;

(4) The nonhomogeneous weak Herz space is defined by

WKα,p
q (Rn) = {f is measurable on Rn : ||f ||WKα,p

q
< ∞},

where

‖f‖WKα,p
q

= sup
λ>0

λ

[ ∞∑
k=0

2kαpm̃k(λ, f)p/q

]1/p

.

Definition 2. Let α ∈ R, 0 < p, q < ∞.

(1) The homogeneous Herz type Hardy space is defined by

H ·Kα,p
q (Rn) = {f ∈ S′(Rn) : G(f) ∈ ·Kα,p

q (Rn)},

and
‖f | H ·Kα,p

q = ‖G(f)‖·Kα,p
q

;
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(2) The nonhomogeneous Herz type Hardy space is defined by

HKα,p
q (Rn) = {f ∈ S′(Rn) : G(f) ∈ Kα,p

q (Rn)},

and
‖f‖HKα,p

q
= ‖G(f)‖Kα,p

q
;

where G(f) is the grand maximal function of f . The Herz type Hardy spaces have
the atomic decomposition characterization.

Definition 3. Let α ∈ R, 1 < q < ∞. A function a(x) on Rn is called a central
(α, q)-atom (or a central (a, q)-atom of restrict type), if

(1) Suppa ⊂ B(0, r) for some r > 0 (or for some r ≥ 1),

(2) ||a||Lq ≤ |B(0, r)|−α/n,

(3)
∫

Rn a(x)xγdx = 0 for |γ| ≤ [α− n(1− 1/q)].

Lemma 1([13]). Let 0 < p < ∞, 1 < q < ∞ and α ≥ n(1−1/q). A temperate dis-
tribution f belongs to HK̇α,p

q (Rn)(or HKα,p
q (Rn)) if and only if there exist central

(α, q)-atoms (or central (α, q) -atoms of restrict type) aj supported on Bj = B(0, 2j)
and constants λj,

∑
j |λj |p < ∞ such that f =

∑∞
j=−∞ λjaj(or f =

∑∞
j=0 λjaj)in

the S′(Rn) sense, and

‖f‖HK̇α,p
q

( or ||f ||HKα,p
q

) ∼

∑
j

|λj |p
1/p

.

Now we can state our results as following.

Theorem 1. Let 0 < β ≤ 1, 0 ≤ δ < n − β and DγA ∈ Lipβ(Rn) for all γ with
|γ| = m. Suppose that TA

δ is bounded from Lp(Rn) to Lq(Rn) for any p, q ∈ (1,+∞)
and 1/q = 1/p− (δ + β)/n. Then

(a) If max(n/(n + β), n/(n + ε)) < p ≤ 1, 1/p − 1/q = (δ + β)/n, then TA
δ is

bounded from Hp(Rn) to Lq(Rn);

(b) If 0 < β < min(1, ε), then T̃A
δ is bounded from Hn/(n+β)(Rn) to Ln/(n−δ)(Rn);

(c) If 0 < β < min(1, ε), then TA
δ is bounded from Hn/(n+β)(Rn) to weak

Ln/(n−δ)(Rn).

Theorem 2. Let 0 < β ≤ 1, 0 ≤ δ < n − β, 0 < p < ∞, 1 < q1, q2 < ∞,
1/q1 − 1/q2 = (δ + β)/n and DγA ∈ Lipβ(Rn) for all |γ| = m with |γ| = m.
Suppose that TA

δ is bounded from Lp(Rn) to Lq(Rn) for any p, q ∈ (1,+∞) and
1/q = 1/p− δ/n. Then
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(a) If n(1−1/q1) ≤ α < min(n(1−1/q1)+β, n(1−1/q1)+ε), then TA
δ is bounded

from HK̇α,p
q1

(Rn) to K̇α,p
q2

(Rn);

(b) If 0 < p ≤ 1 and 0 < β < min(1, ε), then T̃A
δ is bounded from

HK̇
n(1−1/q1)+β,p
q1 (Rn) to K̇

n(1−1/q1)+β,p
q2 (Rn);

(c) If 0 < p ≤ 1 and 0 < β < min(1, ε), then TA
δ is bounded from

HK̇
n(1−1/q1)+β,p
q1 (Rn) to WK̇

n(1−1/q1)+β,p
q2 (Rn).

Remark. Theorem 2 also holds for the nonhomogeneous Herz and Herz type Hardy
space.

3. Proofs of theorems

We begin with a preliminary lemma.

Lemma 2([5]). Let A be a function on Rn such that DγA ∈ Lq
loc(R

n) for |γ| = m
and some q > n. Then

|Rm(A;x, y)| ≤ C|x− y|m
∑
|γ|=m

(
1

|Q̃(x, y)|

∫
Q̃(x,y)

|DγA(z)|qdz

)1/q

,

where Q̃(x, y) is the cube centered at x and having side length 5
√

n|x− y|.
Proof of Theorem 1. (a) It suffices to show that there exists a constant C > 0 such
that for every Hp-atom a, there is

‖TA
δ (a)‖Lq ≤ C.

Let a be a Hp-atom, that is that a supported on a cube Q = Q(x0, r), ||a||L∞ ≤
|Q|−1/p and

∫
Rn a(x)xγdx = 0 for |γ| ≤ [n(1/p− 1)]. We write

∫
Rn

|TA
δ (a)(x)|qdx =

(∫
|x−x0|≤2r

+
∫
|x−x0|>2r

)
|TA

δ (a)(x)|qdx = I + II.

For I, taking q1 > q and 1 < p1 < n/(δ + β) such that 1/p1 − 1/q1 = (δ + β)/n, by
Hölder’s inequality and the (Lp1 , Lq1)-boundedness of TA

δ , we have

I ≤ C‖TA
δ (a)‖q

Lq1 |2Q|1−q/q1 ≤ C‖a‖q
Lp1 |Q|1−q/q1 ≤ C.

To obtain the estimate of II, we need to estimate TA
δ (a)(x) for x ∈ (2Q)c. Let Q̃ =

5
√

nQ and Ã(x) = A(x) −
∑

|γ|=m

1
γ!

(DγA)Q̃xγ . Then Rm(A;x, y) = Rm(Ã;x, y)
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and DγÃ(y) = DγA(y)− (DγA)Q. We write, by the vanishing moment of a,

TA
δ (a)(x) =

∫
Rn

[
K(x, y)Rm(Ã;x, y)

|x− y|m
− K(x, x0)Rm(Ã;x, x0)

|x− x0|m

]
a(y)dy

−
∑
|γ|=m

1
γ!

∫
Rn

K(x, y)(x− y)γDγÃ(y)
|x− y|m

a(y)dy.

By Lemma 2 and the following inequality

|b(x)− bQ| ≤
1
|Q|

∫
Q

‖b‖Lipβ
|x− y|βdy ≤ ‖b‖Lipβ

(|x− x0|+ r)β ,

we get
|Rm(Ã;x, y)| ≤

∑
|γ|=m

||DγA||Lipβ
(|x− y|+ r)m+β .

By the formula (see [5]):

Rm(Ã;x, y)−Rm(Ã;x, x0) =
∑
|η|<m

1
η!

Rm−|η|(DηÃ;x0, y)(x− x0)η,

and note that |x− y| ∼ |x− x0| for y ∈ Q and x ∈ Rn \Q, we obtain

|TA
δ (a)(x)| ≤ C

∑
|α|=m

||DαA||Lipβ

∫
Q

[
|y − x0|

|x− x0|n+1−δ−β
+

|y − x0|ε

|x− x0|n+ε−δ−β

+
∑
|η|<m

|y − x0|m+β−|η|

|x− x0|n+m−|η|−δ
+

|y − x0|β

|x− x0|n−δ

 |a(y)|dy

≤ C
∑
|γ|=m

||DγA||Lipβ

[
|Q|β/n+1−1/p

|x− x0|n−δ
+

|Q|ε/n+1−1/p

|x− x0|n+ε−δ−β

]
.

Thus

II ≤
∞∑

k=1

∫
2k+1Q\2kQ

|TA
δ (a)(x)|qdx

≤ C

 ∑
|γ|=m

‖DγA‖Lipβ

q
∞∑

k=1

[
2kqn(1/p−(n+β)/n) + 2kqn(1/p−(n+ε)/n)

]

≤ C

 ∑
|γ|=m

‖DγA‖Lipβ

q

,
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which together with the estimate for I yields the desired result.
(b) We need only prove that there exists a constant C > 0 such that for every
Hn/(n+β)-atom a supported on Q = Q(x0, r), there is

‖T̃A
δ (a)‖Ln/(n−δ) ≤ C.

We write∫
Rn

|T̃A
δ (a)(x)|n/(n−δ)dx =

[∫
|x−x0|≤2r

+
∫
|x−x0|>2r

]
|T̃A

δ (a)(x)|n/(n−δ)dx := J+JJ.

For J , by the following equality

Qm+1(A;x, y) = Rm+1(A;x, y)−
∑
|γ|=m

1
γ!

(x− y)γ(DγA(x)−DγA(y)),

we have

|T̃A
δ (a)(x)| ≤ |TA

δ (a)(x)|+ C
∑
|γ|=m

∫
Rn

|DγA(x)−DγA(y)|
|x− y|n−δ

|a(y)|dy,

thus, T̃A
δ is (Lp, Lq)-bounded by [10][14], where 1 < p < n/(δ + β) and 1/q =

1/p− (δ + β)/n. We see that

J ≤ C‖T̃A
δ (a)‖n/(n−δ)

Lq |2Q|1−n/((n−δ)q) ≤ C||a||n/(n−δ)
Lp |Q|1−n/((n−δ)q) ≤ C.

To obtain the estimate of JJ , we denote that Ã(x) = A(x)−
∑

|γ|=m

1
γ!

(DγA)2Qxγ .

Then Qm(A;x, y) = Qm(Ã;x, y). We write, by the vanishing moment of a and

Qm+1(A;x, y) = Rm(A;x, y)−
∑

|γ|=m

1
γ!

(x− y)γDγA(x), for x ∈ (2Q)c,

T̃A
δ (a)(x) =

∫
Rn

K(x, y)Rm(Ã;x, y)
|x− y|m

a(y)dy

−
∑
|γ|=m

1
γ!

∫
Rn

K(x, y)DγÃ(x)(x− y)γ

|x− y|m
a(y)dy

=
∫

Rn

[
K(x, y)Rm(Ã;x, y)

|x− y|m
− K(x, x0)Rm(Ã;x, x0)

|x− x0|m

]
a(y)dy

−
∑
|γ|=m

1
γ!

∫
Rn

[
K(x, y)(x− y)γ

|x− y|m
− K(x, x0)(x− x0)γ

|x− x0|m

]
DγÃ(x)a(y)dy.

Then, similar to the proof of (a), we obtain, for x ∈ (2Q)c

|T̃A
δ (a)(x)| ≤ C|Q|−β/n

∑
|γ|=m

[
||DγA||Lipβ

(
|Q|1/n

|x− x0|n+1−δ−β
+

|Q|ε/n

|x− x0|n+ε−δ−β

)

+ |DγÃ(x)|
(

|Q|1/n

|x− x0|n+1−δ
+

|Q|ε/n

|x− x0|n+ε−δ

)]
.
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Thus

JJ ≤ C

 ∑
|γ|=m

||DγA||Lipβ

n/(n−δ)
∞∑

k=1

[
2kn(β−1)/(n−δ) + 2kn(β−ε)/(n−δ)

]
≤ C,

which together with the estimate for J yields the desired result.
(c) By the following equality

Rm+1(A;x, y) = Qm+1(A;x, y) +
∑
|γ|=m

1
γ!

(x− y)γ(DγA(x)−DγA(y)),

we get

|TA
δ (f)(x)| ≤ |T̃A

δ (f)(x)|+ C
∑
|γ|=m

∫
Rn

|DγA(x)−DγA(y)|
|x− y|n−δ

|f(y)|dy.

By (b) and [11, Theorem 3.1], we obtain

|{x ∈ Rn : TA
δ (f)(x) > λ}|

≤ |{x ∈ Rn : T̃A
δ (f)(x) > λ/2}|

+

∣∣∣∣∣∣
x ∈ Rn :

∑
|γ|=m

∫
Rn

|DγA(x)−DγA(y)|
|x− y|n−δ

|f(y)|dy > Cλ


∣∣∣∣∣∣

≤ C(||f ||Hn/(n+β)/λ)n/(n−δ).

This completes the proof of Theorem 1. �

Proof of Theorem 2. (a) Let f ∈ HK̇α,p
q1

(Rn) and f(x) =
∑∞

j=−∞ λjaj(x) be the
atomic decomposition for f as in Lemma 1. We write

‖TA
δ (f)‖p

K̇α,p
q2

≤
∞∑

k=−∞

2kαp

 k−3∑
j=−∞

|λj |‖TA
δ (aj)χk‖Lq2

p

+
∞∑

k=−∞

2kαp

 ∞∑
j=k−2

|λj |||TA
δ (aj)χk||Lq2

p

= L1 + L2.
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For L2, by the (Lq1 , Lq2) boundedness of TA
δ , we have

L2 ≤ C
∞∑

k=−∞

2kαp

 ∞∑
j=k−2

|λj |||aj ||Lq1

p

≤

 C
∑∞

j=−∞ |λj |p
(∑j+2

k=−∞ 2(k−j)αp
)

, 0 < p ≤ 1

C
∑∞

j=−∞ |λj |p
(∑j+2

k=−∞ 2(k−j)α
)(∑j+2

k=−∞ 2(k−j)α
)p/p′

, p > 1

≤ C
∞∑

j=−∞
|λj |p ≤ C||f ||p

HK̇α,p
q1

.

For L1, similar to the proof of Theorem 1(a), we have, for x ∈ Ck, j ≤ k − 3,

|TA
δ (aj)(x)| ≤ C

(
|Bj |β/n

|x|n−δ
+

|Bj |ε/n

|x|n+ε−δ−β

)∫
Rn

|aj(y)|dy

≤ C
(
2j(β+n(1−1/q1)−α)|x|δ−n + 2j(ε+n(1−1/q1)−α)|x|δ+β−n−ε

)
.

Thus

||TA
δ (aj)χk||Lq2 ≤ C2−kα

(
2(j−k)(β+n(1−1/q1)−α) + 2(j−k)(ε+n(1−1/q1)−α)

)
and

L1 ≤ C
∞∑

k=−∞

( k−3∑
j=−∞

|λj |(2(j−k)(β+n(1−1/q1)−α) + 2(j−k)(1/2+n(1−1/q1)−α)

+ 2(j−k)(γ+n(1−1/q1)−α)
)p

≤


C
∑∞

j=−∞ |λj |p
∑∞

k=j+3

(
2(j−k)(β+n(1−1/q1)−α)

+2(j−k)(1/2+n(1−1/q1)−α) + 2(j−k)(γ+n(1−1/q1)−α)
)p

, 0 < p ≤ 1
C
∑∞

j=−∞ |λj |p
[∑∞

k=j+3

(
2(j−k)(β+n(1−1/q1)−α)

+2(j−k)(1/2+n(1−1/q1)−α) + 2(j−k)(γ+n(1−1/q1)−α)
)]

, p > 1

≤ C
∞∑

j=−∞
|λj |p ≤ C||f ||p

HK̇α,p
q1

.

These yield the desired result.

(b) Let f ∈ HK̇
n(1−1/q1)+β,p
q1 (Rn) and f(x) =

∑∞
j=−∞ λjaj(x) be the atomic de-
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composition for f as in Lemma 1. We write

‖T̃A
δ (f)‖p

K̇
n(1−1/q1)+β,p
q2

≤
∞∑

k=−∞

2kp(n(1−1/q1)+β)

 k−3∑
j=−∞

|λj‖T̃A
δ (aj)χk‖Lq2

p

+
∞∑

k=−∞

2kp(n(1−1/q1)+β)

 ∞∑
j=k−2

|λj |‖T̃A
δ (aj)χk‖Lq2

p

= M1 + M2.

For M2, by the (Lq1 , Lq2) boundedness of T̃A
δ , we have

M2 ≤ C
∞∑

k=−∞

2kp(n(1−1/q1)+β)

 ∞∑
j=k−2

|λj |‖aj‖Lq1

p

≤ C
∞∑

j=−∞
|λj |p

(
j+2∑

k=−∞

2(k−j)p(n(1−1/q1)+β)

)

≤ C
∞∑

j=−∞
|λj |p ≤ C‖f‖p

HK̇
n(1−1/q1)+β,p
q1

.

For M1, similar to the proof of Theorem 1(b), we have, for x ∈ Ck, j ≤ k − 3,

|T̃A
δ (aj)(x)| ≤ C

∑
|γ|=m

||DγA||Lipβ

(
|Bj |1/n

|x|n+1−δ−β
+

|Bj |ε/n

|x|n+ε−δ−β

)∫
Rn

|aj(y)|dy

+ C
∑
|γ|=m

|DγÃ(x)|
(

|Bj |1/n

|x|n+1−δ−β
+

|Bj |ε/n

|x|n+ε−δ−β

)∫
Rn

|aj(y)|dy

≤ C
∑
|γ|=m

[
||DγA||Lipβ

(
2j(1−β)

|x|n+1−δ−β
+

2j(ε−β)

|x|n+ε−δ−β

)

+ |DαÃ(x)|
(

2j(1−β)

|x|n+1−δ−β
+

2j(ε−β)

|x|n+ε−δ−β

)]
.

Thus

M1 ≤ C
∑
|γ|=m

||DγA||Lipβ

·
∞∑

k=−∞

2kp(n(1−1/q1)+β)

 k−3∑
j=−∞

|λj |p
2j(1−β)

2k(n+1−δ−β)
+

2j(ε−β)

2k(n+ε−δ−β)

p

2knp/q2
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≤ C
∑
|γ|=m

||DγA||Lipβ

∞∑
j=−∞

|λj |p
∞∑

k=j+3

(
2p(1−β)(j−k) + 2p(ε−β)(j−k)

)

≤ C
∑
|γ|=m

||DγA||Lipβ

∞∑
j=−∞

|λj |p ≤ C||f ||p
HK̇

n(1−1/q1)+β,p
q1

.

These yield the desired result.
(c) We know the following inequality

|TA
δ (f)(x)| ≤ |T̃A

δ (f)(x)|+ C
∑
|γ|=m

∫
Rn

|DγA(x)−DγA(y)|
|x− y|n−δ

|f(y)|dy.

Thus, by (b) and [11, Theorem 3.2.], we get

||TA
δ (f)||

WK
n(1−1/q1)+β,p
q

≤ ||T̃A
δ (f)||

WK
n(1−1/q1)+β,p
q

+ C
∑
|γ|=m

∣∣∣∣∣∣∣∣∫
Rn

|DγA(x)−DγA(y)|
|x− y|n−δ

|f(y)|dy

∣∣∣∣∣∣∣∣
WK

n(1−1/q1)+β,p
q

≤ C||f ||
HK̇

n(1−1/q1)+β,p
q1

.

This finishes the proof of Theorem 2. �

4. Examples

1. Calderón-Zygmund singular integral operator.
Let T be the Calderón-Zygmund operator defined by(see [8], [15])

T (f)(x) =
∫

Rn

K(x, y)f(y)dy,

the multilinear operator related to T is defined by

TA(f)(x) =
∫

Rn

Rm+1(A;x, y)
|x− y|m

K(x, y)f(y)dy.

Then it is easily to see that T satisfies the conditions in Theorem 1 and 2
with δ = 0.

2. Fractional integral operator with rough kernel.
For 0 ≤ δ < n, let Tδ be the fractional integral operator with rough kernel
defined by(see [2], [7])

Tδ(f)(x) =
∫

Rn

Ω(x− y)
|x− y|n−δ

f(y)dy,
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the multilinear operator related to Tδ is defined by

TA
δ (f)(x) =

∫
Rn

Rm+1(A;x, y)
|x− y|m+n−δ

Ω(x− y)f(y)dy,

where Ω is homogeneous of degree zero on Rn,
∫

Sn−1 Ω(x′)dσ(x′) = 0 and
Ω ∈ Lipε(Sn−1) for 0 < ε ≤ 1, that is there exists a constant M > 0 such
that for any x, y ∈ Sn−1, |Ω(x) − Ω(y)| ≤ M |x − y|ε. Then Tδ satisfies the
conditions in Theorem 1 and 2.

3. Riesz potential operator.
Let 0 ≤ δ < n, the Riesz potential operator is defined by(see [1], [14])

Iδ(f)(x) =
∫

Rn

f(y)
|x− y|n−δ

dy,

the multilinear operator related to Iδ is defined by

IA
δ (f)(x) =

∫
Rn

Rm+1(A;x, y)
|x− y|m+n−δ

f(y)dy,

Then Iδ satisfies the conditions in Theorem 1 and 2.
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