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Abstract. A quadrature rule for the solution of Cauchy singular integral equation is

constructed and investigated. This method to calculate numerically singular integrals

uses classical Jacobi quadratures adopting Hunter's method. The proposed method

is convergent under a reasonable assumption on the smoothness of the solution.

1. Introduction

The singular integral equation with Cauchy kernel most often considered has the

form

(1) a(x) �(x) +
b(x)

�

Z 1

�1

�(t)dt

t� x
+

Z 1

�1

k(x; t)�(t)dt = f(x) � 1 < x < 1:

The �rst integral term is understood to be a Cauchy principal value integral. It is

possible to reduce singular integral equations (hereafter SIE's) to Fredholm integral

equations (indirect method), but direct solution methods are preferred in practice.

Also it is proved that when the Gauss numerical integration rule is used that both

numerical methods are equivalent in the sense that they provide the same numerical

results for the same number of abscissae used in numerical integrations [15].

Usually the unknown function is replaced by the product of a smooth function times

a function taken as the weight of the quadrature. For variable coe�cients SIE's, this

is non classical and the nodes and weights of the quadrature rule must be constructed

from scratch. But for constant coe�cients SIE's this reduces to Jacobi quadrature. In

this paper, we want to analyze the replacement of the possibly nonclassical weights and

nodes, by the weights and zeros of Jacobi polynomials. This is a quite simpler approach

than methods using nonclassical weights and nodes.

We mention some methods for the variable coe�cient SIE's. Theocaris and Tsamas-

phyros [14] attempt to apply a Gauss-Jacobi quadrature rule directly, but this results

in the need to compute the zeros of a second kind of Jacobi function. Dow and Elliott

[4] have developed an algorithm with error analysis, for solving an approximate solu-

tion to (1) by replacing f and k by polynomial approximations. In [12] the solvability

of the discrete system is proved for arbitrary selection of quadrature and collocation

nodes, but no error analysis is given there. Here we propose a simpler method and

consider nodes which are well known zeros of Jacobi polynomial and want to develop

the error analysis for the proposed method. This study concerns only global polynomial

approximation.

In the error analysis, a restrictive assumption is used, which is a bound on the size

of the coe�cients. Since we are unable to �nd a closed form inverse from the matrix of
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the discretized system, we perform the error analysis by treating the singular operator

as a perturbation of the identity.

2. Preliminaries

The second kind singular integral equation with variable coe�cients can be written

as

a(x) �(x) +
1

�

Z 1

�1

K(x; t)

t� x
�(t)dt = f(x) � 1 < x < 1

This equation is reduced to (1) by setting K(x; t) = (K(x; t) � K(x; x)) + K(x; x)

and

k(x; t) =

�
(K(x; t) �K(x; x))=(t � x) t 6= x

K
0(x; t) t = x

The singular integral in (1) is interpreted in the Cauchy principal value sense. And the

equation

(2) a(x)�(x) +
b(x)

�

Z 1

�1

�(t)

t� x
dt = f(x) � 1 < x < 1

is called the dominant equation of the equation (1) [10]. We have solutions for SIE's

under the following assumptions in general.

� The functions a; b; f and k are H�older continuous in each independent variable

on [�1; 1]:

� The functions S(x) = a(x) + b(x) and D(x) = a(x) � b(x) do not vanish any-

where on [�1; 1].

Also it is not restrictive to assume the coe�cients to satisfy r(x)2 = a(x)2+b(x)2 = 1

and b(x) 6= 0 on (�1; 1): For the latter case, b(x) may vanish at a �nite number of

isolated points in (�1; 1) as long as it remains of one sign. However, we will assume

b(x) not vanishing in (�1; 1) for simplicity. Following [4], let us de�ne the continuous

function

�(x) = �

1

2�i
ln
a(t)� ib(t)

a(t) + ib(t)

=
1

�
arctan

b(t)

a(t)
+N(t)

where N takes only integer values and may have discontinuities at the zeros of a=b and

��=2 < arctan x < �=2. In order to apply Elliott-Parget quadrature [2, 3], we assume

a(x) doesn't have zeros in (�1; 1), or we can choose Hunter's quadrature[8, 1]. The

fundamental function Z is de�ned as

Z(t) = (1 + t)n1(1� t)n2 exp

�
�

Z 1

�1

�(�)

� � t
d�

�
for t 2 (�1; 1)

where n1 and n2 are integers. This function can be rewritten, after �xing n1 and n2,

as

Z(t) = (1 + t)n1��(1)(1� t)n2+�(�1) 
(t)
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say, where


(t) = expf(�(1)� �(t)) ln(1� t) + (�(t)� �(�1)) ln(1 + t)

�

Z 1

�1

�(�)� �(t)

� � t
d�g:

Here de�ne � = n2 � �(1) and � = n1 + �(�1). The behavior of Z near the end points

�1 and 1 can be considered as following :

Z is bounded and 1=Z is in�nite, but integrable if 0 < �; � < 1

Z is in�nite, but integrable and 1=Z is bounded if �1 < �; � < 0

In all cases we de�ne the index � of the singular operator of the dominant equation by

� = �(n1 + n2):

It turns out that � can have up to three values depending upon whether Z is chosen

to be bounded or unbounded at non-special ends i.e. those for which �(1) (or �(�1)) is

not an integer. The largest of these values of � is the index of singular operator [5]. It

is shown that this index can attain only three values �1; 0 and 1 if b(x) 6= 0 in [�1; 1].

If � = 1, we need an extra condition, to get a unique solution,

(3)
1

�

Z 1

�1

�(t)dt = Co:

When � = �1, the consistency condition for the existence of solution of (2) isZ 1

�1

f(x)

Z(x)
dx = 0:

We use �(x) = (1 � x)�(1 + x)� as a Jacobi weight function. Then Z(x) = �(x)
(x)

where 
(x) is a positive continuous function on [�1; 1]. �(x) can be rewritten in terms

of �(x), which expresses explicitly the singular behavior at the end points, and a new

unknown function y�(x) such that

�(x) = Z(x)'(x) = �(x)
(x)'(x) = �(x)y�(x):

We consider here the case � = 1 i.e �1 < �; � < 0. Let H�[�1; 1] denote the class

of H�older continuous function of order � on [�1; 1]. Then clearly �(x) 2 H�[�1; 1]

with � = min(��;��) [10]. The integral (2) can be discretized by a classical Gaussian

quadrature. Let ti be the zeros of P
(�;�)
n (x) and sj be the zeros of P

(��;��)
n�1 (x) where

P
(�;�)
n (x) denotes the Jacobi polynomial of degree n relative to the weight function

�(x), and P
(��;��)
n�1 (x) the one relative to 1=�(x). Since b(x) 6= 0, we can rewrite the

equation (2) as

(4) �
a(x)

b(x)
�(x)y�(x) +

Z 1

�1

�(t)y�(t)

t� x
dt =

�f(x)

b(x)

If we use a�(x) for �a(x)=b(x) and f�(x) for �f(x)=b(x), then (4) becomes

(5) a�(x)�(x)y
�(x) +

Z 1

�1

�(t)y�(t)

t� x
dt = f�(x)
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To evaluate the singular integral in (5), we will use two kinds of Gauss-Jacobi quadra-

ture : Hunter's and Elliott-Paget's, where both methods use Lagrange interpolations

to derive quadrature rules. Let

 
(�;�)
n (z) =

Z 1

�1

�(t)
P
(�;�)
n (t)

t� z
dt = 2(z � 1)�(z + 1)�q(�;�)n (z) for z 62 [�1; 1]

where q
(�;�)
n represents the so called Jacobi function of the second kind. We can de�ne

the values of the function  
(�;�)
n (x) on the interval [�1; 1] as follows

 
(�;�)
n (x) =

1

2

n
 
(�;�)
n (x+ i0) +  

(�;�)
n (x� i0)

o
:

It can be expressed explicitly by means of the hypergeometric function [13]. Then

Hunter's method has the form;

Q
�

n(y
�
; x) =

nX
i=1

wiy
�(ti)

ti � x
+
 
(�;�)
n (x)y�(x)

P
(�;�)
n (x)

where Z 1

�1

�(t)y�(t)

t� x
dt = Q

�

n(y
�
; x) + �Gh

for x 2 [�1; 1]:

The Elliott-Paget method for singular integral is of the form

Qn(y
�
; x) =

nX
i=1

"
wi �

 
(�;�)
n (x)

P
(�;�)0

n (ti)

#
y
�(ti)

ti � x

where Z 1

�1

�(t)y�(t)

t� x
dt = Qn(y

�
; x) + �Ge for x 2 [�1; 1]:

Let us remark that through the paper, Ci; i = 0; 1; 2; : : : ; 9 represent di�erent positive

constants.

3. Numerical Scheme

In this section, by applying Hunter's method to (5) and (3) and collocating at the

node points sj , we have"
a�(sj)�(sj) +

 
(�;�)
n (sj)

P
(�;�)
n (sj)

#
y
�(sj) +

nX
i=1

wiy
�(ti)

ti � sj
+ �G1

= f�(sj)(6)

j = 1; : : : ; n� 1

and

(7)

nX
i=1

wiy
�(ti) = Co
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where (i) �G1
is the error of Gauss-Jacobi quadrature on sj and

(8) (ii) wi =

Z 1

�1

�(t)
P
(�;�)
n (t)

(t� ti)P
(�;�)0

n (ti)
dt

are the weights of Gauss-Jacobi quadrature. (7) is from the normalization condition (3).

Recall that this equation is of index 1. We transform (5) into the following equation

a�(x)�(x)y
�(x) +

Z 1

�1

1

�(t)

y
�(t)�2(t)

t� x
dt = f�(x)

and then proceed similarly, using as weight 1=�(t) and collocating at ti,"
a�(ti)�(ti) +

 
(��;��)
n�1 (ti)

P
(��;��)
n�1 (ti)

�
2(ti)

#
y
�(ti) +

n�1X
j=1

w
�

j
y
�(sj)

sj � ti
�
2(sj) + �G2

(9)

= f�(ti) i = 1; 2; : : : ; n

where (i) �G2
is the error of Gauss-Jacobi quadrature on ti and

(ii) w�j =

Z 1

�1

1

�(t)

P
(��;��)
n�1 (t)

(t� sj)P
(��;��)0

n (sj)
dt j = 1; : : : ; n� 1

are the weights of Gauss-Jacobi quadrature.

In (9), we applied a di�erent weight function 1=�(x) to the exactly same equation (5)

and we are looking for the solution in (�1; 1) because we already knew the end point

behavior of the solution. Note that �(x) is smooth on (�1; 1) i.e. y�(x)�2(x) can be

assumed to be smooth on (�1; 1) if y�(x) is smooth.

After dropping the error terms from (6) and (9), we add nonzero constants l (see the

matrix D1 and the bottom of the proof of Theorem 5) and �ho (see the last column of

G) to both sides of (7) and (9) respectively. Then we obtain a square system for the

unknown vector

y = (y(s1); : : : ; y(sn�1); 1; y(t1); : : : ; y(tn))

approximating the exact solution

y
� = (y�(s1); � � � ; y

�(sn�1); 1; y
�(t1); : : : ; y

�(tn)):

The system can be written as

(10) My =

�
D1 A

G D2

�
y = f

where f = (f�(s1); : : : ; f�(sn�1); Co+l; f�(t1)�ho; : : : ; f�(tn)�ho), andD1 is a diagonal

matrix with 8<
: (D1)jj = a�(sj)�(sj) +

 
(�;�)
n (sj)

P
(�;�)
n (sj)

for j = 1; : : : ; n� 1

(D1)nn = l
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We will use 1=wn for l and 1=jb(1)j for ho later (see [6]).

D2 = diag

 
a�(ti)�(ti) +

 
(��;��)
n�1 (ti)

P
(��;��)
n�1 (ti)

�
2(ti)

!
i = 1; : : : ; n

We assume (D1)ii and (D2)ii are not zero for all i.

Aij =

� wj

tj�si
i 6= n

wj i = n
j = 1; 2; : : : ; n

Gij =

(
w
�

j

sj�ti
�
2(sj) j 6= n

�ho j = n
i = 1; 2; : : : ; n

Note that the system is of order 2n. Also we remark that G can be written as the

product of two matrices B and D3:

G = BD3

where

Bij =

(
w
�

j

sj�ti
j 6= n

�ho j = n
i = 1; 2; : : : ; n

and D3 is the diagonal matrix with�
(D3)jj = �

2(sj) j = 1; 2; : : : ; n� 1

(D3)nn = 1 j = n

Let us introduce the matrices:

N1 =

0
BBB@

w1

. . .

wn�1

wn

1
CCCA ; N2 =

0
BBB@

w
�

1
. . .

w
�

n�1
1

jb(1)j

1
CCCA ;

S =

0
BBB@

1
t1�s1

1
t2�s1

� � �
1

tn�s1

...
... � � �

...
1

t1�sn�1

1
t2�sn�1

� � �
1

tn�sn�1

1 1 � � � 1

1
CCCA :

With these matrices, the matrices A and B can be rewritten by

A = SN1 ; B = �S
t
N2

In this notation, the marix M which is the main matrix in discretized system is expressed

in form of two matrices' multiplication.

M =

�
D1 S �N1

�S
t
�N2 �D3 D2

�

=

�
D1D

�1
3 N

�1
2 S

�S
t

D2N
�1
1

� �
N2D3 0

0 N1

�
:
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Here we use notations P1 and P2 for D1D
�1
3 N

�1
2 and D2N

�1
1 respectively which are

diagonal matrices. Then

M = RT

where

(11) T =

�
N2D3 0

0 N1

�
; R =

�
P1 S

�S
t
P2

�
Lemma 1. (i)

 
(�;�)
n (sj)

P
(�;�)
n (sj)

� �(sj)

(ii)

 
(��;��)
n�1 (ti)

P
(��;��)
n�1 (ti)

�(ti) � O(1)

Proof. >From [13], we have

f(
d

dx
)kP (�;�)

n (x)gx=cos � =

�
�
���k�1=2

O(nk�1=2) c=n � � � �=2

O(n2k+�) 0 � � � c=n:

For positive sj, we have the following estimate:

 
(�;�)
n (sj)

P
(�;�)
n (sj)

�

j
��1=2

n
��

j���1=2n�
�

�
j

n

�2�
� �(sj):

If sj is negative, we use � instead of �. This still gives us the same estimate �(sj).

Similarly,

 
(��;��)
n�1 (ti)

P
(��;��)
n�1 (ti)

�(ti) �
i
���1=2

n
�

i��1=2n��

�
i

n

�2�
� O(1):

�

In matrices D1 and D2, if the value of a�� is large enough that it exceeds the value

of  n=Pn, then we may have positive values in P1 and P2 since D3, N1 and N2 are

positive diagonal matrices. Also, since a�(x) doesn't have any zero in (�1; 1), we make

a�(x) have positive values without loss of generality.

Hence we may assume P1 and P2 are positive diagonal matrices.

Theorem 2. The system (10) is nonsingular. i.e. The matrix M is nonsingular.

Proof. It su�ces to show R is invertible since M = RT and T is a diagonal matrix

with positive entries. R can be decomposed as below.

R =

�
P1 S

�S
t
P2

�

=

 
P

1
2

1 0

0 P

1
2

2

! 
In P

�
1
2

1 SP
�

1
2

2

�P
�

1
2

2 S
t
P
�

1
2

1 In

! 
P

1
2

1 0

0 P

1
2

2

!
:
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Here we observe that the middle matrix Q in the above expression can be written

Q = I +K where K is skew-symmetric.

Q =

 
In P

�
1
2

1 SP
�

1
2

2

�P
�

1
2

2 S
t
P
�

1
2

1 In

!

= I2n +K

where

K =

 
0 P

�
1
2

1 SP
�

1
2

2

�P
�

1
2

2 S
t
P
�

1
2

1 0

!
:

ThenQ is nonsingular sinceK is skew-symmetric. Note thatK has only pure imaginary

eigenvalues. This shows eigenvalues of Q can not be zero. Consequently we have the

Theorem hold. �

We have some properties of the matrices A and B if � + � = �1. In this case

AB = BA = �1
b2(1)

In i.e. A is the inverse of B if b2(1) = �1. Also AN�1
1 A

t becomes a

diagonal matrix 1
b2(1)

N
�1
2 .

4. Error Analysis

In this section, we will show the convergence of the method proposed and the error

bound of this method in uniform norm. Let �G1
be the vector of quadrature errors at

the node points ti and �G2
the one at sj. Then the system (10) can be rewritten with

the errors �G1
and �G2

in (6) and (9) respectively as follows:

M y
� = f

� = (fT1 � �
T

G1
; f

T

2 � �
T

G2
)

where y� is the exact solution and

f
T

1 = [f�(s1); : : : ; f�(sn�1); Co + l]

f
T

2 = [f�(t1)� ho; : : : ; f�(tn)� ho]:

Let us de�ne the error vector

e = y
�
� y:

We have then

Me = (��TG1
;��

T

G2
)T

This system can be written as

RTe = � where � =

�
��

T

G1

��
T

G2

�
:

Hence we have the exact error expression by Theorem 2 as follows:

e = T
�1
R
�1
�:

Taking the Euclidean norms, we have the estimate

(12) kek2 � kT
�1
k2 kR

�1
k2 k�k2:

Lemma 3. R is nonsysmetric positive de�nite.
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Proof. For any nonzero x = (xt1; x
t
2)
t
2 R

2n
;

x
t
Rx = (xt1; x

t

2)

�
P1 S

�S
t
P2

��
x1

x2

�
= (xt1; x

t

2)

�
P1x1 + Sx2

�s
t
x1 + P2x2

�
= x

t

1P1x1 + x
t

1Sx2 � x
t

2S
t
x1 + x

t

2P2x2

= P1kx1k
2 + P2kx2k

2
> 0

since P1 and P2 are positive diagonal matrices and xt1Sx2 � x
t
2S

t
x1 = 0 as below.

x
t

1Sx2 = (Sx2; x1) = (x1; Sx2) = (Sx2)
t
x1 = x

t

2S
t
x1

�

Now let us de�ne the symmetric part of matrix R by

U =
1

2
(R +R

t) =

�
P1 0

0 P2

�
:

Note that U is symmetric positive de�nite by Lemma 3.

Lemma 4.

kR
�1
k2 � kU

�1
k2

Proof. It su�ces to show

�n(R) � �n(U)

where �n(R) is the smallest singular value of R and �n(U) is the smallest eigenvalue of

U . Since U is symmetric positive de�nite, �n(U) is positive i.e.

�n(R) � �n(U) > 0:

This shows
1

�n(R)
�

1

�n(U)
:

Consequently, this lemma holds. For any x 2 R
2n with kxk2 = 1,

x
t
Ux =

1

2
(xtRx+ x

t
R
t
x) = x

t
Rx � kxk2kRxk2:

By Courant-Weyl theorem,

�n(U) = min
w1;:::;wn�12R

2n
max
x2R2n

x?w1;:::;wn�1

x
t
Ux

� min
w1;:::;wn�12R

2n
max
x2R2n

x?w1;:::;wn�1

jjRxjj2

= �n(R)

�

By using Lemma 4, the error bound (12) becomes

(13) kek2 � kT
�1
k2 kU

�1
k2 k�k2:

Hence we have the error in uniform norm in the following Theorem.
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Theorem 5.

kek1 � C1n
1=2

k�k1

where

k�k1 = max(k�G1
k1; k�G2

k1):

Proof. Since T and U are digonal matrices, from (13),

kek2 � kT
�1
k2 kU

�1
k2 k�k2

= kT
�1
k1 kU

�1
k1 k�k2

� kT
�1
k1 kU

�1
k1 n

1
2 k�k1:

Here we can get the uniform norm of T�1 which is expessed in (11). From [13], we have

(14) wi = O(n�1) and w
�

j � �
2(sj) � wj

since

w
�

j � �
2(sj) � j

�2�+1
� n

2��2
�

�
j

n

�4�
= j

2�+1
� n

�2��2

� wj .

This gives us

(15) kT
�1
k1 = O(n)

On the other hand,

U
�1 =

�
P
�1
1 0

0 P
�1
2

�
=

�
N2D3D

�1
1 0

0 N1D
�1
2

�

By Lemma 1, (D2)ii � �(ti), thus for the positive ti (If we use the negative ti, then

we replace � by �.),

(N1D
�1
2 )ii � wi � �

�1(sj)

� i
2�+1

� n
�2��2

�

�
i

n

�
�2�

= i � n
�2
:

This gives us the following,

(16) kN1D
�1
2 k1 = O(n�1):

Also, for i 6= n,

(N2D3D
�1
1 )ii � w

�

i � �
2(si) � �

�1(si) = w
�

i � �(si) � wi � �
�1(si)

by (14). In case i = n,

(N2D3D
�1
1 )nn = jb(1)j�1 �

1

l
= jb(1)j�1 � wn = O(n�1):
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Similarly,

(17) kN2D3D
�1
1 k1 = O(n�1):

>From (16) and (17),

(18) kU
�1
k1 = O(n�1):

Here we have the following bound,

kek1 � C3 � n
1
2 � k�k1

since kT�1k1kU
�1
k1 � C4 from (15) and (18). �

To get the error bound of the system, we need to know the error of Hunter's method.

It can be obtained from [2, 3, 16]. Now we have the error for Hunter's method as

follows.

Lemma 6. If y�
(m)

2 H� with m+ � � 1, then for x 2 (�1; 1)

j�Gj = O

�
lnn

n��2�

�

where � is any positive number such that 2� < �.

Lemma 6 and Theorem 5 let us have the convergence of the proposed method and

its convergence rate is given by the following Theorem.

Theorem 7. y�
(m)

2 H� with m+ � � 1, the following estimate holds

kek1 � C5 n
�(m+��1=2�2��")

with " > 0 arbitrarily small.

In this procedure, we need y� 2 H
1 to obtain the convergence [11, 3]. If we choose

Elliott-Paget method [3] instead of Hunter's, and proceed in a similar way, we have the

convergence and its convergence rate is given as below

Corollary 8. If y�
(m)

2 H�, with m+ � > 1=2,

kek1 � C6 n
�(m+��1=2�2��")

:

Finally, we construct the approximate solution represented by the Lagrange interpo-

latory polynomial P2n�1(x) on the nodes ft1; s1; � � � ; sn�1; tng,

P2n�1(x) =
1

2

2
4 nX
i=1

y(ti)
P
(�;�)
n (x)

(x� ti) P
(�;�)0

n (ti)
+

n�1X
j=1

y(sj)
P
(��;��)
n�1 (x)

(x� sj) P
(��;��)0

n�1 (sj)

3
5 :
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Let P �

2n�1(x) be the polynomial of degree 2n � 1 interpolating on the exact values of

y
�(x). Then

jP
�

2n�1(x) � P2n�1(x)j �

1

2

"
nX
i=1

jy
�(ti)� y(ti)j

����� P
(�;�)
n (x)

(x� ti) P
(�;�)0

n (ti)

�����
+

n�1X
j=1

jy
�(sj)� y(sj)j

����� P
(��;��)
n�1 (x)

(x� sj) P
(��;��)0

n�1 (sj)

�����
3
5

� kek1 � �p

where �p is the Lebesgue constant [13] and

�p = O(logn):

Consequently, we have an estimate between the exact solution and the approximate

solution as follows.

ky
�
� P2n�1k1 � ky

�
� P

�

2n�1k1 + kP
�

2n�1 � P2n�1k1

� C7!(y
�
;
1

n
) + C8kek1 lnn

where ! is the modulus of continuity. This ensures the rate convergence under the

result of Theorem 7.

Theorem 9. If y�
(m)

2 H� with m+ � � 1, then

ky
�
� P2n�1k1 � C9 � n

�(m+��1=2�2��")

The above result can be strengthened with the Elliott-Paget method i.e. we have a

weaker condition such as m + � > 1=2. The rates of convergence of two methods are

almost same even if they have di�erent restrictions on the smoothness of the function

y
�.
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