• Title/Summary/Keyword: singular

Search Result 1,637, Processing Time 0.021 seconds

AN ABS ALGORITHM FOR SOLVING SINGULAR NONLINEAR SYSTEMS WITH RANK DEFECTS

  • Ge, Rendong;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.1-20
    • /
    • 2003
  • A modified ABS algorithm for solving a class of singular non-linear systems, $F(x) = 0, $F\;\in \;R^n$, constructed by combining the discreted ABS algorithm and a method of Hoy and Schwetlick (1990), is presented. The second differential operation of F at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.

The Analysis of the optimal Control problem for the Singular System with the Generalized State Space Model (일반화된 상태모델로 주어진 싱귤라 시스템의 최적제어문제 해석)

  • Kwae-Hi lee
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.4
    • /
    • pp.301-304
    • /
    • 1987
  • The Optimal Control Problems for the singular system with the Generalized state space model are considered. It is shown that when the system is singular, the dimension can be reduced by coordinate transformation and the equivalent nonsingular system is got. After we have nonsingular system, the solution for the optimal control problem can be got by Riccati equation.

  • PDF

Resistant h-Plot for a Sample Variance-Covariance Matrix

  • Park, Yong-Seok
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.407-417
    • /
    • 1995
  • The h-plot is a graphical technique for displaying the structure of one population's variance-covariance matrix. This follows the mathematical algorithem of the principle component biplot based on the singular value decomposition. But it is known that the singular value decomposition is not resistant, i.e., it is very sensitive to small changes in the input data. In this article, since the mathematical algorithm of the h-plot is equivalent to that of principal component biplot of Choi and Huh (1994), we derive the resistant h-plot.

  • PDF

MC2 Rings

  • Wei, Jun-Chao
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.651-663
    • /
    • 2008
  • In this paper, we first study some characterizations of left MC2 rings. Next, by introducing left nil-injective modules, we discuss and generalize some well known results for a ring whose simple singular left modules are Y J-injective. Finally, as a byproduct of these results we are able to show that if R is a left MC2 left Goldie ring whose every simple singular left R-module is nil-injective and GJcp-injective, then R is a finite product of simple left Goldie rings.

A NOTE ON THE SOLUTION OF A NONLINEAR SINGULAR INTEGRAL EQUATION WITH A SHIFT IN GENERALIZED $H{\ddot{O}}LDER$ SPACE

  • Argyros, Ioannis K.
    • East Asian mathematical journal
    • /
    • v.23 no.2
    • /
    • pp.257-260
    • /
    • 2007
  • Using the center instead of the Lipschitz condition we show how to provide weaker sufficient convergence conditions of the modified Newton Kantorovich method for the solution of nonlinear singular integral equations with Curleman shift (NLSIES). Finer error bounds on the distances involved and a more precise information on the location of the solution are also obtained and under the same computational cost than in [1].

  • PDF

A Pollution Adaptive Mesh Generation Algorithm Using Singular Shape Functions (특이 형상함수를 이용한 Pollution 적응 요소생성 알고리즘)

  • 유형선;장준환;편수범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.110-118
    • /
    • 2001
  • In many areas of finite element analysis, elements with special properties are required to achieve maximal accuracy. As examples, we may mention infinite elements for the representation of spatial domain that extend to special and singular elements for modeling point and line singularities engendered by geomeric features such as reentrant corners and cracks. In this paper, we study on modified shape function representing singular properties and algorigthm for the pollution adaptive mesh generation. We will also show that the modified shape function reduces pollution error and local error.

  • PDF

AN ABS ALGORITHM FOR SOLVING SINGULAR NONLINEAR SYSTEMS WITH RANK ONE DEFECT

  • Ge, Ren-Dong;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.167-183
    • /
    • 2002
  • A modified discretization ABS algorithm for solving a class of singular nonlinear systems, F($\chi$)=0, where $\chi$, F $\in$ $R^n$, is presented, constructed by combining a discretization ABS algorithm arid a method of Hoy and Schwetlick (1990). The second order differential operation of F at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.

A Class of Singular Quadratic Control Problem With Nonstandard Boundary Conditions

  • Lee, Sung J.
    • Honam Mathematical Journal
    • /
    • v.8 no.1
    • /
    • pp.21-49
    • /
    • 1986
  • A class of singular quadratic control problem is considered. The state is governed by a higher order system of ordinary linear differential equations and very general nonstandard boundary conditions. These conditions in many important cases reduce to standard boundary conditions and because of the conditions the usual controllability condition is not needed. In the special case where the coefficient matrix of the control variable in the cost functional is a time-independent singular matrix, the corresponding optimal control law as well as the optimal controller are computed. The method of investigation is based on the theory of least-squares solutions of multi-valued operator equations.

  • PDF

A NUMERICAL METHOD FOR CAUCHY PROBLEM USING SINGULAR VALUE DECOMPOSITION

  • Lee, June-Yub;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.487-508
    • /
    • 2001
  • We consider the Cauchy problem for Laplacian. Using the single layer representation, we obtain an equivalent system of boundary integral equations. We show the singular values of the ill-posed Cauchy operator decay exponentially, which means that a small error is exponentially amplified in the solution of the Cauchy problem. We show the decaying rate is dependent on the geometry of he domain, which provides the information on the choice of numerically meaningful modes. We suggest a pseudo-inverse regularization method based on singular value decomposition and present various numerical simulations.

  • PDF

ON THE ORBITAL STABILITY OF INHOMOGENEOUS NONLINEAR SCHRÖDINGER EQUATIONS WITH SINGULAR POTENTIAL

  • Cho, Yonggeun;Lee, Misung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1601-1615
    • /
    • 2019
  • We show the existence of ground state and orbital stability of standing waves of nonlinear $Schr{\ddot{o}}dinger$ equations with singular linear potential and essentially mass-subcritical power type nonlinearity. For this purpose we establish the existence of ground state in $H^1$. We do not assume symmetry or monotonicity. We also consider local and global well-posedness of Strichartz solutions of energy-subcritical equations. We improve the range of inhomogeneous coefficient in [5, 12] slightly in 3 dimensions.