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Abstract

A class of singular quadratic control problem is considered. The state is governed
by a higher order system of ordinary linear differential equations and very general
nonstandard boundary conditions. These conditions in many important cases reduce
to standard boundary conditions and because of the conditions the usual controlla-
bility condition is not needed. In the special case where the coefficient matrix of
the control varjable in the cost functional is a time-independent singular matrix,
the corresponding optimal control law as well as the optimal controller are
computed. The method of investigation is based on the theory of least-squares

golutions. of multi-valued operator- equations.

1. Introduection

In many classical control problems associated with a first order system of differential
equations, it is usually required that the state go through an initial target and a
terminal target. But if the system is not completely controllable, then this is not
always possible. In some physical problems. due to the possible error involved in the
measuring the targets, it may be sufficient to require that the system be “nearest”
possible to the targets, a concept which is somewhat similar to the least-squares
solutions of a matrix equation. A similar idea has been used in the literature. For
example, Minamide and Nakamura [19, 20] considered the system which is required
to go through one given target, but to be within a limit from a second target. Because

of the uniqueness theorem of a linear differential equation, this system generates only
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single responses, and the control spaces must be restricted to get the desired effect.
But the controllability condition is not needed. There is another idea used in this
paper. It is to require that the system be simultaneously “closest” possible to two
given targets without insisting that the system go through any of its targets., In this
case also the controllability condition is not needed and the admissible controllers
become cheap (they cover the whole space under consideration). But each controllers
may generate infinitely many responses. The idea of this nonstandard boundary
condition was first used in [13] to study a regular quadratic control problem generated
by a first order system. It was shown there that in many important cases this
condition becomes a classical boundary condition.

There are many physical problems where a state is governed by a higher order
scalar equation ([3]). The usual way of studying this is to convert the equation into
a first order sustem by arbitrary choices of change of variables. These changes often
obscure the essential of the problem and are inconvenient. Thus in this paper we will
consider singular quadratic control problems associated directly with higher order
systems with very general nonstandard boundary conditions. This is investigated by a
new method based on multi-valued operator theory. This paper generalizes and at the
same time simplifies the corresponding results of [13]. Some of the results in this
paper is announced in [14]. The paper is organized as follows: In §2, we summarize
some known results on the least-squares -solutions and the generalized inverses of
multi-valued linear operator equations. In §3, we discuss differential operators
generated by higher order systems which will be needed in the next section in deriving
the adjoint equations for optimal controllers. §4 is the main part of this paper. The
main results are Lemma 4.1(V) for the description of the dynamical system. Theorem
4.8 for feedback-like optimal controllers and Theorem 4.9 for the descriptions of the
optimal controllers by state equations and adjoint equations. Finally the feedback laws
and explicit forms of optimal controllers are given for a generalized two-point problem.
In particular, our method of computing the optimal controllers is much simpler than
the complicated method used in [4] and work for nonautonomous cases as well.

We now fix some notations. The field of complex numbers is denoted by €. The
n-dimensional complex Euclidean space €™ will be identified as #x1 complex matrices.
1f M is a complex matrix, then M*, M* and M will denote the transpose conjugate,
the transpose and the conjugate of M, respectively. If M is a densely defined linear
operator, its adjoint will also be denoted by M*. Finally for ac=C", the Euclidean

norm {a*a)¥? of a is denoted by |a].
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2. Least-squares solutions

In this section we will discuss some recent known results on the least-sqares
solutions of multi-valued linear operator equations which will be needed later. 1f H is
a Hilbert space (over the complex field C). then its norm and inner product will be
denoted by ||-]] and <,> without indicating their dependence on H. suppose that H,
and H, are Hilbert spaces over C. Then H,PH, will denote the direct-sum Hilbert
space of all ordered pairs {x, y} with x&H,, y&H, with the inner product <, > and
the norm ||-]| defined by [|{x, y}{|=Cllx|f*+[I¥]*3"%,

"::{x,y}: {p»q}>°:<xap>+ ":qu\)'

Let M be a subset of H;DH,. Then
M*==the orthogonal complement of M

re= (s H DH: <m,x>=0, all meM},
M-1z=the graph inverse of M

s={{x, y}=H,DH,: {3, 21EM},
M#*zzthe adjoint of M

= {{y, —x}e=H,DH,: {x,y}=M"),
Dom M:={x: {x,y}=M for some y},
Range M:={y: {x,y}e=M for some x}
Null M:={x: {x,0}=M)}
M@u):={y: {u,y}=M}.
It is well-known that when M is the graph a densely defined linear operamr,‘ M* is
the graph of the adjoint operator of M. In any case, M* is always closed vector
subspace of H,(DH,. |

suppose now that M is a linear manifold (called also a vector space, or a multi-

valued linear operator). Then we say that wuc=M is a least-squares solution (briefly
LS8) of an inclusion ge=M(x) (g is a given element of H,) if se Dem M and for
some ye=M(u).

ly—gll=min {|lz—gl|: z& Range M}.

The following can be found in [16].
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Theorem 2.1 Let MC”HDH, be linear and ge=H,. Then
(i) ge=M(x) has a LSS iff :
g=Range M+ (Range M)".
If Range M is closed, then
Range M+ (Range M)‘zH,,.‘

(ii) » is a L3S of g&=M(x) if and only if »c= Dom M and ge=M(u) +Null M*.

In order to find all LSSS of ge=M(x), we need the concept of the orthogonal
generalized inverse of a vector space.

Assume further that M is a closed vector subspace of H,(pH, Let # be the
orthogonal projector of H; onto null M (i.e.. # is a bounded selfadjoint linear
operator in H; such that #*=¢® and Range #=Null M). Let #" be the orthogonal
projector of H, onto Null M*. Deline a vectos subspace M*H,(BH, (called the

orthogonal generalized inverse of M) by
Mé={{x, (I—~2)(2)}: xe=H,;, 2e=H,, {z—~T-P")(x)e=M}.
The following can be found in [18] (see also [167).

Theorem 2.2 Let MC-H ,(BH, be a closed vector subspace. Then
(i) M?=R+(Null M*®{0}) (orthogonal direct sum),

where
Ri={{z,J-2)(»): .x}e=M}.
In particular, M* is the graph of a closed linear operator and satisfies

DomM?*=Range M+Null M*,
Range M*=Dom M+ (Null M)™.

(ii) Dom M?¥ =H, if and only if Range M is closed.
(iii) {y,g}es=M if and only if ¢ eRange M and
y=M*¥*(g)+k for some k=null M.

Remark 2.1 It is shown in [18] that R is the unique closed operato (the graph of)
such that M~! is the orthogonal direct sum of R . and {0} P null M. R is called the

orthogonal operator part of M1,

— 24
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By part (i), M*(x)=y if and only if x=2+4 and y=R(2) for some ke=Null M*
and 26zRange M.

Remark 2.2 By the above theorem.
Null M#*=Null M*+ M((0).

For, x=Null M* if and ohly if ({x,0}c=M*. This is equivalent by the above
theorem to x=y-+k for some k=Null M*, ye=Null R.
By the definition of R,

Null R={x: (I-#)(y)=0 for some y such that {y,x}e=M}
={x: y&Null M, {y,x}=M}

Thus

Null M*=Null M?*+M(0).

Remarks 2.3 In the case when M is the graph of densely defined closed linear
operator, M* coincides with the graph of the Moore-penrose generalized inverse of M.
Now any mxn complex matrix D can and will be in this paper identified as a linear
operator from C" into C™. Then D* is precisely the #xXm Moore-penrose generalized
inverse matrix of D.

Using generalized inverses we can find all Lsss of an inclusion in the following

theorem. Its proof can be found in [17].

Theorem 2.3 Let MCCH ,@PH; be a closed vector subépa.ce.
Assume that ge=Range M+ Null M*, Then M*(g)+Null M is the set of all Lsss
of ge=M(x). In particular, M*(g)e=(Null M)* and is the unique LSS of ge=M(x) with

the smallest H;-norm.

3. Differential operator

In this section we will summarize some known facts and prove some results on
differential operators which will be needed later. All the notations used in this section
will be used in the next section. Let [7,, #,] be a compact interval. Let y and y*(the

formal adjoint of 7) be the /th order formal expression:
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11
r x::x(l)*‘%: P ($)x®, t<t<lh,

rta= (= DO T (- DHPAHOND, teit<t,

where x is an #x1 vector, and x> denotes the ith derivative of x. For each 7, P;
is an nx# matrix-valued function of ¢ whose ith derivatives (taken componentwise)
exist and are continuous on [¢,, £,]. Let X, (similar for X,) be the Hilbert space

over C of all zx1 vector-valued functions f defined on {7, ¢,] such that

¥ dl [ﬁ:lf(t)[’dt]“’<oo. The inner product <, > of this space is defined by

ogryi=[ FOFD at.

In the case when f and g arenx k; and nX k%, matrix-valued functions, respectivly, for
convenience, {f,g) will denote the k Xk, matrix I Zt; FH(t) g(t)de, provided that the
integrals exist. We now define our basic differential operators. Let T, and T, be the
differential operators (also are called the minimal and maximal differential operators,

respectively) .in X, defined by:

Dom T,={xe=X,: x% ¥ is absolutely continuous on [#,, #;], xe=X.},
Tyx=7x, xc=Dom T,:

Dom Ty={xe=Dom T;: 2 (4,) =x8>(#) =0, 0si=2—1},

Tox=7x, xe=Dom T,

The following is well-known. Sse, for example, £12], [7].

Theorem 3.1 T =T, T*=To* and Ty, T, are densely defined and are closed.

Moreover.

Dom T *=Dom T4, Dom T;=Dom T,*,
To*x=r%x, x<=Dom T,*.
For ge= Dom T,, let § be the #lx1 matrix-valued function of ¢ defined by
g
g": o g(l)

-1
L g¢



A Class of Singular Quadratic Control Problem With Nonstandard Boundary Conditlons

Then there exists a s/ x#»l continuous, invertible matrix-valued function E(f) such that

the Green’s formula holds:
@1 [Rrom 5-2 T
=EE)EW) () —2 (1) E )y (te)

for all x,ye=Dom T,.

Throughout this paper ¢ will denote an arbitrary but fixed #:<» matrix solution

satisfying
(3.2) 76 =0nrni, det ¢(fo) 0.

Thus ¢(¢) is a fundamental matrix solution and $(t) is ‘invertible for all fe={t,, £,].

Let us partition its inverse as

(3.3) ¢ (O=LR®W), S&)]

where R(¢) is nlxn(l—1) and S(2) is nl xn. Clearly if /:=1. then ¢ *=S.
Using the method similar to the one used in p.87, of [6] we have the following

variation-of-constant formula. We state it for completeness.
Theorem 3.2 Let fe=X,. Then yx=/ if and only if
(D= (Da+ O[] (SH(ds, to<t=its for
some ac=C™.

Remark 3.1 We can also write the last term as

s[4 37 Car=1) xnlf(s) ds,

The following, especially (ii), will play an important role in the next section in
deriving the integro-differential equations for optimal pairs. It appears that the result

is new in the literatue.

Theorem 3.3 Assume further that Py, Py --P,_, are ({—1) times differentiable on

S
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[, £11. Then '
(i) S* is a nxnl fundamental matrix solation of r*x=20.
(ii) For fe=X,, let

u(t):=5*t) [Bg*r)(9)as, tatch

Then

12(!1) ={.
rtu=f a.a.tc=[t,, 1.

Proof. Define a »nlxnl matrix A by

el

Where

flll‘_;on(l*l)nu ALZ:IMI-I)!

Ap=—Pyy  —Ap=[Pi-Piy].

Then rx==0 is equivalent to #=A%F=dz/dt).
Moreover, ¢ is a nixni fundamental matrix solution of #=A%. It is clear that
@ '=[R,S] is differentiable,

and
d
)] ’dt‘[R’ S]=—[R,S]A.

since each P; is (/—1)-times differentiable. A is (/- 1)-times differentiable. Thus it
follows from (1) that (R,S) and hence S are /-times differentiable, Since
(@) GLR,SI=L,
we see that
(3) ¢ 0S=1,, $PS=0, (0<i<i~2).
Differentiating the second equality
(4) ¢SV =0, (0<i<I-3).
Since ¢9¢~#8=(, differentiating this
(5) $4-98, = —¢4-D5=—1,,
Differentiating (4),
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since ¢U " PSW==(, differentiating and then using (5),
(7) ¢4 98®P=(~1),.
Continuing this process, we obtain
(8) ¢SV =0 (0i<<l—2~/, 0Cj<l—2).
(9) ¢S4 P=(~1),.
We now show that y*S*=(.
Put
L
ﬁl—-l
Then it follows from (1) that

(10) R,=PyS*,
Ri=—R, ,+P,,S% (2<i<i-1),
S*= — Ry PioiS*,
Thus, for 1<i<ll-1,
(11) S*(i):(Pt-lsi)(l-l)_*_(_1)([)‘*18*)(1'"2)
ek (=D HPLSM) A+ (D R
Taking #==/--1, and then differentiating,
(12) (Si)(l):(quls“)(l-l(_._(P‘”ls'll')(ha)
e (= 1)FIPS™,
The last identity implies that y*S*=0. We now show that S* is a »#xx#/ fundamental
matrix solution. Suppose that S*a=8*Vg:=...==S*0-Dy=( for some constant vector a.

Then it follows from (11) that
S*D(a) = (~1)'R,..a=0 (Q=i<i~1).

‘Thus

[g:] a=(., and 8o a=:0

as [R,S] is invertible. Thus S* is a fundamental matrix solution of y*x=0.

Now let # be as in the theorm. Then using (8)

(13) 4= (SN0 1% ()ds (0isi-1).

Differentiating #“~% and using (9),
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(14) #P=(S*)Wg+(—Df.
where

a: =B @)ds.

Using (8) and (13),
(15) (Pe*u) = (PRS%)q (0<i<i—1).
Thus using (14) and (15), and 7¥S*=p,

we see that

rru=1 (~DHP® SHOGE(~DIS*Og+ (=D
=(r*S"q+s=1.

It is clear that #(#;)=0. This completes the proof.
Remark 3.2 As is well-known in the scalar case,

eO=41[} (SHds, tu<t<t,,
is the unique solution of
r8=f, &(te)=0u1.;-

One of the main features of this paper is a completely general nature of boundary
operators involved. Thus we will discuss it. By Theorem 3.1, the (maximal) operator

T, is closed. Thus its domain becomes a Hilbert space with the T,-norm defined by
el 2 = ([l P4+ 1T wxff2) 2
The following is well-known, but we state it for completeness. Its proof follows

immediately from the Riez-Fisher respresentation theorem for a linear functional.

Theorem 3.4 F is a T,-continuous linear operator from Dom T, into C¢if and only
if there exist nxd matrix-valued fuctions €;,$), of &=[#,, ;] such that their column

vectors are in X, and
Fa)=[{H (@ 7 s +Qit0)dt

for all x=Dom T,.

Under certain condition on §2;,Q,, this boundary operator is reduced to a familiar
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evaluation operator. This is shown in the following.

Corollary 3.5 Assume that F has the same representation as in the ahove theorem.
Then there exist dxnl constant matrices M and N such that F()=Mz(ty) +Nz(t,)
for all x<=Dom T, if and only if the columns of (; are in Dom T, and 7*Q;=—-Q,

almost all £.
=—(,%(ts) E*(t), N=Ca*(t,) E*(ty).

Proof. Assume that F has the representation as in the above.

Then for all x&=Dom T,
<r=x, Qz>=<xu "“Q:>~

Hence Q,=Dom To* columnwise and T*Q;=—Q, columnwise. Thus by Theorem 3.1,
Q,=Dom T, columnwise and y+*Q,=~Q, almost everywhere. Returning to the repre-

sentation and using the Green's formula (3.1).

Me(t) + N&(t) =[<rx, Q> — <x, >
=%(2) E* (1) (80 — 0% (1) E*(to) £(to)

for all xe=Dom T.
Thus

M=—*(t), N=0*) Et(ty).

This proves the “only if” part. The “if” part can be proved easily using the Green's
formula. This completes the proof. '
4. Singular Control Problem
We will consider in this section the problem of ‘minimizing
@) JGm)=[1 QU+ W =10 |Ddt+1G@ 1%,

subject to
(4.2) us=X,,
(4- 3) xe=Dom T;, T;xzzBu,
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(4.4) |F(x)—7|=min{|F(¥) —7r]: yeDom T, T,y=8Bu),

Here (i) U,W and B are mxm, nxn and n#Xm matrix-valued functions of t=
[4o, t1], respectively, whose entries are Lebesque integrable and bounded almost every-
where in [#o, 1],

(ii) %o is-a given element of X, and 7 as a given 4dx 1 vector in €4,

(iii) G is a T,-continuous lineas operator from Dom 7, into C%, and F is a T~
continuous linear operator from Dom T into €.

Since U can vanish partially or totally on [#, #)], the problem is called singular.

When » and x satisfy (4.2)-(4.4), = is called a control and x is called a response
corresponding to u. The set of all ordered pairs {u,x} satisfying these conditions will
be denoted by %. When {u,x} minimizes J over &, we will call it an optimal pair,
and # and x are called an optimal controller and an optimal response corresponding to
u, respectively.

As we will see later in the following lemima, the ‘condition (4.4) becomes the
“standard” exact conditions F(x)=7y. It is shown in p.80 of [7] that these exact
conditions often reduce to stieltjes conditions. This type of generalized boundary
conditions arise naturally, for example, from diffusion processes, nuclear reactors,
vibrating strings in magnetic fields and economic modelling ([11]). Optimal control
problems associated with Stieltjes conditions have been investigated in [8], [9].

In many classical control problems, a trajectory is required to go through a fixed
initial target and a fixed terminal target. However, this is not always possible if the
state equation is not completely controllable, One can easily construct a state equation
which is not completely controllable. In some phyical problems, due to the error
involved in the targets, it may be sufficient to require that the state be closest possible
to the targets simultaneously. This is the main motivation of considering the general
condition (4.4). Because of this, as we will see later, the complete controllability
condition is not needed and the control space is the whole space. But it gives us a
mathematically more interesting problem-a control generates infinitely many respones.
A somewhat similar idea was used in [19, 207 where the state is required to pass
through a given target, but is required to stay within a limit from the second target.

Because of the uniqueness theorem of a linear - differential equation, the system in
[19, 20] generetes only single responses and the control gpace cannot be the whole
space. It is true that a higher order system of differential equations can be changed

into a system of first order equations by great many different ways. But since we deal
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with a higher order case directly, we do not need such a change. For example, if we
are interested in a higher order scalar cae, we simply take one dimensional case.
Moreover, a higher order system was used in [3] in studying multivariable feedback
systems. This justifies the study of a higher order system. This paper generalizes
and at the same time improves the corresponding results of [13] to a higher order

singular case.

Our plan in this section is: Change the control preblem into a least-squares problem
for a multi-valued operator equation and then derive integro-differential equations for
a controller.

This is a new approach to the problem. Once adjoint equations are derived, we then
derive feedback laws.

By Theorem 3.4 there exist nxXd matrix-valued functions Q< such that their

columns are in X7 and
(4.5) F(x) = ﬁ: (Q* 72 +Qi%x) di, for all xeDom T,.
Define an operator %: X.— X, by

.6 ¥W=¢0) [f (SBu)s) ds,

where ¢ and s are defined in (3.2) and (3.3). Notice that #(x) is the unique solution

of rx==Bu satisfying # (#)(fo)=0. First we have

Lemma 4.1 The following are equivalent:
(i) (u,%)=2.
(it) #=X, and x&=DomT, such that T,x =B,

F(x)—y=[F(¢) (F(#»N*~1] [r—Fx(u))].
(iii) we=X, and

x=@¢(F(IN* [y —~F (o)) ]+ dhk-+-o ()
for some ke= Null F(¢).

(iv) #=X, and x=¢a+H(x) for some ac=C" which is a least-squares solution of

the matrix equation (for « fixed)

F($)(B)=r—F (A ().
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) u=X,, x=DomT,, T\x=Bu,

Flx)—yreNull (F(é)*.

Proof. Using the variation-of-constant formula in Theorem 3.2 and an elementary
property of a matrix equation, the proof for (i) (=) (ii) (=} (i) (=) (iv)
can be carried out by the method similar to the one used to prove Lemma 3.1 and
proposition 3.2 (ii) of [13]. Assume (ii) holds. Then since F{g) (F($))*—~1I is the
orthogonal projector of C? onto Null (F($))* we see that F(x)-—re=Null (F(g))*.
Thus (ii) (=) (v). Assume (v) holds. Write x=gk+#(u) for some ke=C™. Now
F(x)—y=F () +F($)k—re=Null (F($))*.

Thus

F(x)=r1=[F($) (F($))*—I] [F(x@))+F($)k~7]
=[F(¢) (F(gN*~I11 [L(Fx)@)—~r].

Thus(v)== (ii), and so the proof is complete.

Remark 4.1 If F(x)z[j;‘gg], then dim Null (F(¢))*>0.
Thus the condition (4.4) can nmot be reduced to [#'(f), #H{UD]=7".

But it reduces to the mixed two-point conditions:
$* (1) Z(to) +8%(t1) (1) =[F*(4e), $* (1) Ir-

Remark 4.2 If dim Null (F(¢))*=0, equivalently Rank F(¢)=d, then the condition
(4.4) is reduced to F(x)=y. For example, if M is a dxnl constant matrix of rank
d and if F(x)=Mz%(¢,), then the condition (4.4) becomes M#(ts)=y. This is in turn,
becomes #(¢p)e=M*(y)+Null M. Thus in this particuiar case our control problem can

also be worked out by the Maximum Principle, or other existing methods.

Remark 4.3 Let

9= {(u, )=X.DX,: v=DomT,, x=Bu, F(x)=7}

Assume that $ is nonempty. Then it is clear that min{J(w,x): (%,x)e=9@}<min
A
{(J(u,%): (u,2)=9).
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Remark 4.4 Dom #=X,. Moreover, for each control u, either there exists a
unique response corresponding: to » or there exist infinitely many responses correspon-
ding to # Thus [J, if considered as a function of », becomes a multi-valued function
of . We now characterize J. By Theorem 3.4, there exist »xd, matrix-valiued

functions A;, A; such that their columns are in X, and

@) Ge=[}} (4* rx+A4*x) dx, x=Dom T,

Define #;: X, X BX.HCH by
(4.8) 4 ()= {Un, WLH(u)—¢F($))*F (X ()],
G(X(u)~G($) (F(@))(F(x ()N},

and
Az: Null F{¢)C™ - X . PX.PCH
by
(4.9) M (R)=(0,Wok, G($)k]).

Notice that .4, is nondensely defined in C™, and its range is closed. .#, is a
bounded linear operator but its range may not be closed because I/ may not be inver-
tible. Let { be the vector on X.DX,.PC% defined by

(4.10) £={0,Wxo—@F($)*r], —G(¢) (F($))*r}.

Let ||,]| also denote the norm of X.@X,HC%. Then we have the following.

Lemma 4.2

(i) For any (#,x)e=% with
x=¢(F(9))*[r—F(H(u))]+bk+x(u),
whereke=Null F(¢), we have
J(uy x) = ||y () + M (k) — L[ [2

(ii) (u*,x*) is an optimal pair if and only if
() + Ay (RY) — L[|y (26) + Az () — L

for all u=X., ke=Null F(¢).

Here

xt=g(F($))* [r—F(H (u*))]+ gkt + o (u), k*e&Null F(¢).
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Proof. The proof is easy and so we omit it.

By the above lemma, we see that (#*, x™) is an optimal pair if and only if (u*,£7)
is a least-squares solution of the operator equation V(w,k)={ where V (u, k):= 4 (%)
+ My (k), u=Xa kENull F(g).

This is a single-valued operator approachto our problem. On the other hand, if we

define a closed vcetor space .4 by

(4.11) 4=(graph 4)D({0)PRange .43),

then by Lemma 4.2 (ii) we see easily that the following is true.

Lemma 4.3. »* is an optimal controller if and only if w*eX, and there exists
y e 4(u*) such that ||y —{li<llz~Cll for all zc=Range 4. Equivalently, u* is a
least-squares solution of [&=.4(u).

In this paper we will treat an optimal controller as a least-squares solution of a
multi-valued operator equation as in the above lemma. The following is an abstract

description of an optimal controller.

Lemma 4.4.

(i) »* is an optimal controller if and only if #*=X. and (&4 (¥")+Null #*.

(ii) An optimal controller exists if and only if {&=Range .#-+Null .¢*.

When this holds, the set of the optimal controllers is given by the coset MEL) A
Null .#, and is a singleton set if dim Null.#=0.

Moreover, .#%({) is the unique optimal controller with smallest X, norm,

(iii) If U is invertible on [f,, ?;, ] then an optimal controller always exists.

Proof Parts (i), (ii) follows from Lemma 4.3 together with Theorems 2.1 2.3.
Assume U is invertible. Then the range of .# is closed. Since Range .#: is finite

dimensional, it follows from (4.11) that Range .4 is closed.. Hence
Range #-+null #*=X,PX.HCh

Thus by (i), an optimal controller always exists. This completes the proof.

Remark 4.5. Using the definition of .4, uc=Null .« if and only if w=X,, Uu=0,

WAk (u) — g (F(P))F (A (u))—pk} =0,
GC(H (8))—G(§) F($))* F(x(u)=G(¢)k for some k=Null F(g).

— 3 6§ -
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The rest of this section is devoted to characterize (i) of the above lemma by
equations. Thus we will characterize the adjoints of .«4*. \

First we note that .#%*=.4,*|(Null .#*DX,).
Thus

(4.12) Null #*=Null .#* ((Null .£"
We can show easily that

Null #*={(r, g, @)EX DX, DCH: U* u+.x’*(W“g)+(G.x’)*a
=(FR)*((F(eNH*(G(¢N)*a+ W, &)},
Null «4.*={(v,8,a)EXDX.PCH:
(G(@)Yra+(W¢, g =(Null F(é))*},

Thus since

2*()=BH() S*(1) jﬁ* B*(s) w(s) ds, u=Xa.

(Fa)y*(a)y=[B*Q+a* () Na), ac=C¥,
(GA)Y*(a)=[B* Mo+ 2 *(A)(a), a=",

it follows froms from (4.12) that

(4.13) Null 4*={(1, £, DEX.DX,BC4: Urv+a* W +La~Q((F($)*)*]
+B*[ Ay(@) — Q(F($)) ) *q]=0,
ge=(Null F(¢))*}.

where

g=(G(P) ) *a+{We, g).

In the following we will give a necessary and sufficient condition for x* to be an
optimal response corresponding to an optimal controller.” First it is convenient to

introduce a function A(z) by
(4.14) A@@)=(GN*G(2)+ W . W (a-%,)). 2&=Xn.

Then we have

Lemma 4.5 Assume that #* is an optimal controlier. Then the following is equiv-

alent:

— 37
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(i) (u*. x*) is an optimal pair.
(i) ¥ =s(u*) + k4 (F($)) Py — (F()F (o (u*))}

for some k< null F(¢) which is a least-squares solution of the operator equation
(for u*.  fixed) .3(k)="{—. 4 (u*).

@ii) Tya*=But. F(x*)~re Null (F(@))* A(xM)e(Null F(g))*.
Proof First we show that
(1) (A pbts? =) (LAt Do (R) -y (1) — L

for all k&= Null F(¢). u=X,.
For. since #* is optimal. by Lemma 4.2. there exists
ke Null F(¢) such that

(@) llar(ur) + Ay (R*)— QI (o) + Mo (R) L

for all k&= Null F(¢). wu=X,. Letting u=wu*. we see from (2) that {-—.#,(k*)e= Dom
M, and kT =.4,% ([—.4 (u?))+a for some ac= Null .4,. But then

M)+ M (B — L= M () + My by (L M) — = ( My dy? — D) (L~ (7))

This together with (2) implies (1).
Assume. (i). Then (#*. x¥)&2 and

3) Jur. )y J(u.x). all (e x)es9.

Let us write
(4) x*=u0(u*) +¢Uz*+ (F(N—(F($))F o (uh))}

for some k*<= Null F(¢). Then by Lemma 4.2. we see that (2) holds fqr all us=X,
and #=Null F(¢). Taking w=u* there, we see that k" is a least-squares solution of
My (k)= [~ Ay (w*). Thus (i) == (ii).

Assume (ii). We will show that (3) holds for all (w.x)e=2. In view of Lemma
4.2. it is sufficient to show that (2) holds for all we=X,. k= Null F(¢). Since Range
M, is closed and k* is a least-squares solution. A =4, ({—~ .4 (u")) +a for some
ae=Null .#,. Hence ufing (1). |[.# (") +.#,(k") L=

1M1 Ce*) + My ds® (C— oty (0*)) Ll
= (Mgdy® 1) (C— A ()| <A1 () + A2 (R) T
—_ 38 —
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for all ue=X,. k&= Null F(¢). Thus (i) = ().
Assume (ii). Then by Lemma 4.1, T\ xt=Bu*. F(x*)—7ez Null F(¢))*.

since k% is a least-squares solution.
(5) {—.t1(u*)~— (k)= Null 4%,

Using the definition of .#y..4; and {. this is equivalent to
(8) {Uu', W(x*—x,), Gx")}<= Null .4,*.

Thus using the description of .4,* given earlier. (6) is equivalent to A(x")e=(Null
F(#))*. Hence (ii)=—D(iii). Assume (iii) holds.” Then by Lemma 4.1, x* can be
written as (4) for some k*< Null F(¢). But then A(x*)e=(Null F($)* is equivalent
to (5). and so £* is a least-squares solution of M,(&)={—M,(«*). Thus (iii) == (i),

and so the proof is complete.

Remark 4.6 Part (ii) of the above theorem generalizes Theorem 3. 9 of [13]. Note
that if U is invertible on [#,, #,], then #* there becomes M¥(l).

Remark 4.7 By part (ii). an optimal response corresponding to an optimal contro-

ller #* is unique if
dim {k=Null F(¢): Wok=0, G(¢)k=0}.

In the following we show that the optimal responses corresponding to an optimal
control forms a finite dimensional convex set (a coset in this cage). = This is similar
to optimal controllers (see Lemma 4.4). The proof follows easily from Lemma 4.5

(iii). Thus we omit the proof.

Corollary 4.6 Let {«*,x*} be an optimal pair. Then {#*,z*} is an optimal pair if
and only if zt=x*+¢ a for some ac=C™ such that F(@)ae Null (F(g))*.

In the following we will describe an optimal controller. ‘First let us introduce a func-

tion 7(2) (262X,) by
(4.15) 7(2)=A(t) G(2) —Q,(¢) ((G($))*A(2)
+5%(8) [ $%(5) WAW (2= 20) + MG @~ ((F($)) ) *A()) ().

where A(z) is defined in (4. 14).



20 ‘Sung J. Lee

we have the following propesty of 7(z).

Proposition 4.7 Assume further that Py, PpeP, , are (e—1)-times differentiable
on [4, #,]. Then for any z&x,. 7(2)— 4,G(2) +Qu( (G(@))H)*A(2) is t]:;e unique solution
of the differential equation in y:

7Ty = WAV (2 x0) + MG (2) = Qu((F($)) ) *A(2), 5(£1) = 0nenye

Proof. This follows from Theorem 3.3.
In the following we will give feedback-like controllers. To do this it will be

convenient to define an operator U in two cases as follows:

Case i U is a mxm constant matrix.

We define U to be the map from C™ into C™ by
J{a) =U* (). az=C™.

Cage ii U/(¢t) depends on t.

We define U to be the bounded linear operator from X, into X, by
W) () =U*Y U () ult), to7tCH

for all we=X,,.
In any case the (orthogonal) generalized inverse of U will be denoted by U?®.

In the following we obtain feedback-like controllers.

Theorem 4.8 » is an optimal controller if and only if we=X,. and there exist xe=
Dom T; and fe=Null U such that
(i) Tix=Bu.
(ii) F(x)—re Null (F(g))*.
(iif) A(x)ye=(Null F(é))*.
(iv) B*p(x)e= Range U and
u=f~U*(B*)(x)) in X..

Moreover, when (i)— (iv) hold. {x,x} is an optimal pair.  and the set of all optimal

responses corresponding to » is given by

{x-+ga: ac=C™. F($)as Null (F($))*.
[(G())*G($)+ <Wg, We>>Jac=(Null F($))*].

Proof. First we will prove that « is an optimal controller if and only if w=X" and
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there exists = Dom T'; satisfying
(i), (i), (i) and
(iv), U*Uu=—B*y(x) a.a.t.
The idea of the proof consists of replacing Lemma 4.4 (i) by more concrete terms.

Now by this lemma. « is an optimal controller if and only if
(1) {=a(u)+null 4%,
Using the definition of .#. this is equivalent to the existence of k==C"" such that
(2) k= Null F(¢), M1(u)+ (k) —{e= Null 4%,
Let us put
(3) g=k~ (F(@)N? (FA@))+F@N*r.
Then the second statement of (2) is
(4) {Un. WL# () —x,+q], G (u)) +G(@)ge= Null a*.

This can be rewritten. using 4.13, as (5) and (6) together:

(5) AQF () +oq)e=(Null F($))™.

(6) U*Un+ 8% {W*W [ () — %o+ $q]
+ LG () +G(B)q]— QA ((F () Al () + 89}
+BH{ALG(# () +G($)g1-Q (F()D*AF )+ P9} =0.

Let us introduce a variable x by
(7) x=H(u)+¢q.
Then z is the unique solution of

(8) rx=Bu, almost everywhere

satisfying
(9) Z(f)=q.

Clearly x&= Dom T,. Because of (9). we see that (3) is equivalent to
(10) (te)+ (F(N*F (o (2)) -~ (F($))*res Null F(4).

We have shown that » is optimal iff there exists xe= Dom T, such that (8), (10),
(5) and (6), with #(u)+dq being repléced by x, and g by %(#).
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We now show that (10) is equivalent to
(11) F(x)—7eNull (F($)*.
For. since x==#{(u)+¢#(t,) we see that (10) is equivalent to
[I—(F($)) F($)1&(te) + (F($))*(F(x)~7)e= null F(g).
Since Range (F(¢))¥=(Null F(¢))".
[I—(F($))*]&{t )= Null F(g).

we see that the above is again equivalent to (F{(¢))*(F(x)—7)=0. Equivalently. F(x)
—yes Null (F(¢))*=Null (F(¢$))*. This proves (11). Now using the description. of
#*. and using the definition of »(x) and using the fact that x =2 (%) +¢%({). we can

write (6) as
(12) U*Ju=—B*y(x) almost everywhere.

This proves the first claim.

Now U*Ju=—B*p(x) in X, if and only if B*p(x)e= Range U and #=/—U*(B*7(x))
for some fe= null U.

Thus this together with the first claim proves the: first partk of the theorem.
Suppose now that (iy—(iv) hold.. Then by the first part. = is an optimal controller
and so by Lemma 4.5 together with (i) —(iii) we see that {u,x} is  an optimal pair.
Hence by

Corollary 4.6, the set of all the optimal responses is given as claimed.

Remark 4.8 By the above theorem. there exists an optimal controller if and only

if the functional equations

Twx=B{f-U*(B*p(x))}, a.a.t.,
F(x)—res Null (F(g)*.
A(x)e(Null F(¢))*,

B*p(x)e= Range U

has a solution {x,f} with ¥& Dom T, fe= Null U.
Remark 4.9 Assume U(¢) is invertible for all ¢.

Then (Utu) () =U*() U@)) "t u(t) for w=X., Null U={0}.
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Remark 4.10 If U(#)=0 on (4, #;]. then U*=0. Thus any optimal controller must

be a constant controller as.

Null UC,,.

Remark 4.11 In Theorem 4.8, the condition (iv) can be replaced by:
B*() (7(x)) (Y= Range (U*(t) U(1))* a.a.t €[t,, 1,].
and
#()=F)—U*@) U@ Y B*()(5(x)) (), a.a.t for some f()ez null WU*OUE)).

But this approach may cause some problems if we wigh solve the equation T);x=DBu as
it is not clear whether or not one of f and (U*{#) U(#))* B*(¢) (5(x)) (¢) belongs to
Xa.. This is the main reason why we have chosen the operator U.

In the previous theorem we have given feedback-like controllers ». This theorem
is not satisfactory if we wish to solve for x as we have difficult integro-differential

equations
rx=BLf-U*(B*1(x))]

(see also 7{x) in (4.15)).
Thus we will replace »(x) in terms of a “adjoint equation” which will be crucial

later in obtaining a feedback law (see the example below).

Theorem 4.9 Assume further that Py, P,-- P,., are (/—1) times differentiable,
Then » is an optimal controller if and only if # &=X, and there exist x& Dom T,

pe=X, and f= Null U such that

(i) Ty\x=DBu.
(i) F(x)—ye Null (F(é)*
(i) A(x)yes(Null F(é))".
(iv) B*pc= Range U and
u=f—-U*%(B*7p).
(v) n—¢(x)e Dom T,
(vi) r*(n—¢(x)) =W*W (x— o) + 4:G (%)
— QL (FN**A(x), a.a.t € [t t].
(vii) (p—¢(2)) () =0nis1-
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Here
P(x) = A,G(2) — QLG (4)) *I* A(x).

Moreover, when (i)—(vii) hold. {#,x} is an optimal pair, and the set of all the

optimal responses corresponding to u is given by

{x-+da: ac=C™, F(¢)ac=Null (F(¢))*,
[(G($)*G($) + <W, Wg> Jac=(Null F($))*}).

Proof. In Theorem 4.8, let p=9(x). Then »e=X, and by (4.15)
7=9C)+S* O $2 ) VW (5= 20) + 4G () ~ QU(F ($)))*A@)) (5)ds.
By Proposition 4.7, we see that

7—$()E Dom Tyy (7—P(@)) (1) =0ur.1s
(= (%)) =WW (x—x0) 1 1,G (x) — Qs ((F($)) ) * Alx).

Thus the theorem follows from Theorem 4.9. This completes the proof.

Remark 4.12 The above theorem generalizes and at the same time simplifies
Theorem 3.12 of [13].

The above theorem can take various forms depending on F and G. In the following
we will consider a very special case which is directly connected with 3 true two-point

boundary value problem.

Corollary 4.10 Assume that Py, Py---P,., are (I—1) times differentiable. Assume
further that

F(x)=Mz(te) + NE(t).
G(x) =M & (£0) +N.& (4)

for all ¥ Dom T, where M,N are dxnl constant raatrices and M,, N, are d,xnl
constant matrices.

Then » is an optimal controller if and only we=X, and
u=f—U*(B*3) a.a.t
for some fe= Null U,y Dom T, and xe= Dom T, such that

(i) Tyx=2>Bu.
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(i) F(x)~rez Null (F(é))™.

(Hi) (G())Y*C(x) +<We, W (x—xo) >e=(Null F(g))".

(iv) B*p & Range U,

V) rrp=W*W(x—x,) a.a.t.

(vi) E(t,) 7(t1) =N,*G(x)
—N*((GENH*(G(@N*C () + <W§,W(x—%) >}

When » is defined as in the above for some x (response) and 7 (adjoint response),
then the set of all the optimal responses corresponding to the optimal controller » is

given by

{x-+da: as=C™, F(g)acs Null (F(g)*,

Proof In view of Theorem 4.9, it is sufficient to prove that y&=.-Dom T,, and
(iii), (vi), (vii) of this theorem becomes (iii), (v), (vi) of the present theorem,
respectively. Because of the special natureof F and G, we have by corollary 3.5 that

Q,, 4, belong to Dom T ;(columnwise) and

(1) 17Qs=~—Qy, 17 4;=—4; a.a.t.

(2) M=—{%(te) E*(te), My=2:%(to) E*(ta),

(3) N=Qu*(t) E*(ty), Ni=4*) EX(@).
In particular. (1) implies that ¢(x)e Dom T, and so p=¢(x)+ (p—¢(x))e= Dom 7.
Thus W*W (x— %) + MG (x) = ((F () I*A(x) =74 () =1 {(h(2)) = () + 4G (%) —
(F(g))H*Ax).
Hence

rH(n) =W*W (x—x0).
Moreoyer.
Ouir= (7—9C0)) (1) =7 (t:) —F(x) (&)
=70t) —Ae(t) G +Calty) (GHHH*A(2).

This together with (2), (3) gives (vi) of the above theorem. This completes the

proof.

Remark In this paper we have considered in essence nonstandard “two-peint” boundary

— 4 B e
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conditions in the sense that the state is required to be smooth. This paper can be
generalized further to the case where the state is allowed to have discontinuous jumps

at specified points. A special case was considered in [27.

An example. Take /=1, [ty ,]1==[0,1], G=0,
F(x)=Mx(0)+Nx(1), rx=%+Pox and assume that U is a
constant matrix. and

rank F(g)=rank [Mg(0)+N¢(1)]=n.

Then by Corollary 4.10, the problem of minimizing
1
J G2y = [ (Uu|*+ x|,

subject to # &X.. £+ Pex=Bux and

IMx(0)+Nx(1)~7| =min{{My(0) +Ny(1) —7|:3+ Poy=Bu}
y

has an optimal controller if and only if there exist
Be= Null U*U, x= Dom T',. n= Dom T,
such that

(1) &+ Pox=B[f—(UP)*B*(t) »(t)] a.a.t.
(ii) F(x)—ye= Null (F(é))*.
(iii) B*(t) n(t)e= Range U™ a.a.t
(iv) —p+Po*np=W*Wx a.a.t
(v) 7(1)=0nx1-
Moreover. when (i) —(v) hold.

(1) w(t):=p—(U*UY*B*(t) 7(?), 011

is an optimal controller and {»,x} is an optimal pair.

Furthermore, the set of all the optimal responses corresponding to » is given by
{x+a: ac=C, (F($))*F(g)a=0}.

In the following we will compute the optimal pair and find a feedback law.
Assume now that (i)—(v) hold. To get a feed back law, let us put
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(2) () =K(@) x(&)-+£(), 0<11
where K(#) is nxn, g is #x1 and are differentiable on [0, 17.

Then using the adjoint equation (iv) together with (i), (v) we see that

[k—Pe* K—KPo—KS(U*U)*B*K +W*W 1x
&~ Po*+ KB(UU)*B*]g -+ KBB=0,
KQ) 2(1) +2(1)=0.

Thus choose K and g so that

(3) K"KPQ"PO* K“'KB(U*U)’B*K?_:O’ K(])“:'O,
(4) g—(P*+KBW*U)*B*)g-+KB =0, g(1)=0.

Then the feed back controller is given by

(5) u(t)=~—(U*U)*B*(1) K(t) x(£)
+B— (U*U)*B*(t) g(8), 0=i<1.

In order to compute U(¢), we will solve for x and » in (i)~ (v). Note first that

(i) and (iv) can be written as

%], [Po  BWUM!B*) [x]_[BB
(6 [A*’[W*W ~Pg* ] [v]“[ 0 ]
Let 8(2) be a 2ux2n fundamental matrix solution of the homogeneous part of the above

equation. Let
RUAG]

00 =[5

where 4; i3 nx2n, and let
t

h(t)mjoﬁ"(s)[gﬁ)ﬁ] ds.
‘Then by (6).

x=0:(8) (k+h(1)), 7=0,(t) (k+h(t)).
for some 2z x1 constant matrix. Thus (ii) and (v) can be written as

Qk=q.
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where
Q: ._,_.[(F(¢))*(M0x(0) +N01(1))]
0:(1) '

_[(F@N*(r—N6, (1) A1)
q: =[ FEN NS It

Hence since ge= Range @ (this is guaranted by (ii) and (v)), we see that
k=ko+Q¥(q)

for some %, & Null Q.

Therefore the optimal response x and the adjoint optimal response % are given by

@ {x:ﬂllz+ﬂ1(ko+Q'(4)) s
7=0h+0:(ko+Q%(q))

Consequently the optimal controller # is given by
(8) wu=f~—(U*U)IB*{0,h+0,(ko+Q¥(9))}.

Remark. In [4] the optimal controller (open loop) associated with an aufomomous
state equation subject to standard two-point separated boundary conditions was computed
using Drazian generalized inverses. The method used there works only when P,. B
and U are time independent.

Qur method of computing the optimal controllers (see (8)) works well even if P,

and B are time dependent and is simpler and does not make use of Drazian generalized

inverses.
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