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ABSTRACT

The h-plot is a graphical technique for displaying the structure of one
population’s variance-covariance matrix. This follows the mathematical
algorithm of the principal component biplot based on the singular value
decomposition. But it is known that the singular value decomposition
is not resistant, i.e., it is very sensitive to small changes in the input
data. In this article, since the mathematical algorithm of the h-plot is
equivalent to that of principal component biplot, using the algorithm
for the resistant principal component biplot of Choi and Huh (1994),
we derive the resistant A-plot.

KEYWORDS: h-plot, Principal component biplot, Resistant, Singular

value decomposition.

1. INTRODUCTION

The central idea of many multivariate analyses is dimension reduction. The

dimension reduction is easily given by the singular value decomposition which
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is one of the most useful methods in the areas of matrix computation. Tradi-
tionally, the eigensystem is used for dimension reduction in many multivariate
analyses. As a practical matter, however, there are reasons for preferring the
use of the singular value decomposition (Belsley, Kuh and Welsch, 1980, p. 99).
Some multivariate analyses (principal component biplot, correspondence anal-
ysis and principal factor analysis) are similar to principal component analysis
which is a representative method for dimension reduction based on it.

Specially, since the h-plot follows the mathematical algorithm of the prin-
cipal component biplot of Gabriel (1971), this is also based on the singular
value decomposition. But it is known that the singular value decomposition of
the data matrix is not resistant, i.e., it is very sensitive to small changes in the
input data (Choi and Huh, 1994). As some multivariate analyses (principal
component biplot, correspondence analysis and principal factor analysis), the
h-plot based on it is influenced by outliers in data matrix and does not give
stable graphical techniques.

In Section 2, we briefly provide the classical h-plot based on the singular
value decomposition. In Section 3, we provide the resistant version of A-plot
using the algorithm for the resistant singular value decomposition in Choi and
Huh (1994, Theorem). We call this the resistant A-plot. Finally, in Section 4,

we give two numerical illustrations with discussions.

2. THE CLASSICAL h-PLOT: BASED ON THE
SINGULAR VALUE DECOMPOSITION

Consider the n x p variables-centered data matrix X such as X = (xij—Z;)
(with z; = Y;zi/n, 1 =1,...,n;j = 1,...,p). In biplot and principal
component biplot, this kind of centering is usually adopted (Bradu and Gabrel,
1978; Jolliffe, 1986, p. 86). Note that a p-variate sample variance-covariance
matrix S is given by

S =X X/n, (2.1)
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The singular value decomposition of matrix X with rank r can be written

X =UD,V’, (2.2)
where U = (uy,...,%,) and V = (vy,...,v,) are n X r, p X r matrices
with orthogonal columns u; and vy, & = 1,...,r, respectively and D, =

diag(Ar,. .., A;) with singular values Ay > --- > A,. From (2.1) and (2.2), we
have

nSvi = Nw,k=1,...,r (2.3)

This is the usual form of the traditional eigensystem for principal component
analysis except the factor n. So, the singular value decomposition of (2.2)
and the traditional eigensystem of (2.3) are main approaches for principal
component biplot (Gabriel, 1971; Jolliffe, 1986, pp. 75-77; Seber, 1984, pp.
207-208).

Now consider the construction of the classical A-plot. In Corsten and
Gabriel (1976), they provided the construction of 2-dimensional A-plot for a
matrix S based on the eigensystem (2.3). However, we note that in operating
directly on the n x p matrix X, the singular value decomposition avoids the
additional computation burden of forming X'X in (2.1) (Belsley, Kuh and
Welsch, 1980, p. 99).

Therefore we provide the construction of 2-dimensional h-plot based on the

singular value decomposition of (2.2) as:

Step 1: We obtain the largest two singular values, A; and \,, and the corre-

sponding the right singular vectors, v; and v,.
Step 2: We compute the p x 2 matrix

H = n—l/z(Alvl,szz). (24)

Step 3: we have the 2-dimensional A-plot with coordinates providing by rows
of H.
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And as a measure of the quality for this 2-dimensional A-plot, Gabriel (1971)

provides
pi) = AT+ 29/ XM
k=1

where A;, 2 = 1,2 and r are noted in (2.2). He calls this the goodness of fit.

3. THE RESISTANT A-PLOT: BASED ON THE
RESISTANT SINGULAR VALUE DECOMPOSITION

3.1 Construction of the Resistant h-Plot

We know that in previous section, the matrix H of (2.4) can be simply
obtained from the singular value decomposition (2.2).

However, 1t is well known that the sample mean as location estimator is
not resistant, i.e., it is very sensitive to small changes in the input data matrix.
The sample mean which is not resistant influences the variable-centered matrix
X . Also this influences the sample variance-covariance matrix S in (2.1).

So as in principal component biplot, both approaches (traditional eigensys-
tem (2.3) and singular value decomposition (2.2)) for h-plot are not resistant.
Thus this A-plot is influenced by outlying observations and then is not resis-
tant.

Now Choi and Huh (1994, Theorem) provided the resistant singular value
decomposition of an n x p data matrix X" of rank r centered at a robust
location estimate. And we used the median scale estimator. Calculation of
the resistant singular value decomposition can be done using the iterative

procedure with Andrew’s ¢ (-) function given by

_ | esin(t/c), for 0 <t < e,
v(t) = { 0, for t > cr.
Actually, (cr)? is 95 percentile point of x? distribution with p — s degrees of
freedom. As discussed in Section 2, for the 2-dimensional h-plot, we must take
s =2.
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We note that the resistant singular value decomposition can be written by

—

X =UD,.V/, (3.1)

where U is an n x r matrix such that U'D,U = I,, V isa p X r matrix of
eigenvectors X* D, X* such that V'V = I,, and Dy, = diag(A1", ..., A7)
with A%? is the k-th eigenvalue of X* Dy, X*.

In fact, D, = diag(ws,...,w,) is an n x n diagonal matrix with the di-
agonal elements w; = ¢(||&* — &.7||/6)/(||&" — &:7||/6), 1 = 1,...,n. The
calculation of w; can be done using the iterative procedure of Choi and Huh
(1994). Here &;" denotes the ¢-th row of X" and can be viewed as n points in

a p-dimensional space RP. Let &, in a subspace of dimension s(1 < s < p) of

RP be the nearest point of an arbitrary point &;* in R?. And we use the me-
dian scale estimator & = [med;(||&;" — :&i*||2)/x_250(p_3)]1/2, i=1,...,n where
X.250(p—s) is 50 percentile point of x? distribution with p — s degrees of freedom.
So we note that in D,,, the diagonal elements having zero or nearly zero denote
the notable observations in data.

And the resistant singular value decomposition (3.1) gives the weighted

variance-covariance matrix
—, —
S*:X* DwX*/'I'L*, (32)

where n* = Y0 w; = 1, Dy 1,.
From the (3.2), we obtain the form of the resistant eigensystem

n*S* v = ANwve k=1,...,r (3.3)

Of course, we can provide a construction of a resistant hA-plot for S* based
on the resistant eigensystem (3.3). However as a strict analogy with construc-
tion of the classical A-plot in Section 2, we can simply provide a construction
of a resistant A-plot based on the resistant singular value decomposition (3.1).

This proceeds as follows:

Step 1: We obtain the largest two resistant singular values, A} and Aj, and

the corresponding the right resistant singular vectors, v; and vj.
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Step 2: We compute the p x 2 matrix

H* = n* Y2 (X, Mw,). (3.4)

Step 3: We have an optimal 2-dimensional plot with the coordinates provid-

ing by rows of (3.4).

Then this 2-dimensional plot is a resistant version for the classical h-plot. From
now, we call this the resistant h-plot for a sample variance-covariance S. And
with respect to the previous construction of the classical h-plot, we note that
a resistant h-plot for a sample variance-covariance matrix S is the h-plot for

a weighted sample variance-covariance S*.
3.2 Geometric Interpretations of the Resistant A-Plot

In Subsection 3.1, the matrix H™ of (3.4) can be represented as H* =
(hi,..., h;)" where h;‘l = n* Y2 \rvy, A3vj2),7 = 1,...,p. Thus the rows
h;-/(j = 1,...,p) provide the coordinate for the resistant A-plot and the vari-
able j is represented by an arrow from the origion to its vertex at (n*~*/2\*v;;,
n* "2 \5v5).

From Choi and Huh (1994, Lemma), the resistant approximations of co-

variances, variances and correlations are given by

st ~ hh; (3.5)
SR [ (3.6)
rie ~ cos(f), (3.7)

where ~ denotes “resistant approximation”.
Therefore we have the geometric interpretations of these equations as fol-

lows:

(3.5) is the (7, k)-th element of S*.
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(8.8) is the squared lenght of arrow h} and resistantly approximates the

variance of the j-th variable ( = 1,...,p).

(3.7) is the correlation denoting by the cosine of the angle 6 between two
rows h} and hy,j # k.

3.3 Goodness of Resistant Fit

We know pg4) as a measure of an 2-dimensional h-plot. Its algebraic and
mathematical calculations are based on the lower rank least squares approxi-
mation of Householder and Young (1938).

Now we need a measure of the quality for an optimal 2-dimensional resistant
h-plot. Choi and Huh (1994) provided a lower rank resistant approximation.
Therefore with using §* and H*H* instead of X* and Xv?z), their discussions
enoughly lead to the goodness of resistant approximation measures for the

resistant h-plot,

*(4) * * * 2 *
Py = 1=\ S —HH"|'/| " |I’,

- 1—i(xzz)'~’/§( ),

k=3
2 4 r 4
= A/ T
k=1 k=1

We call this a goodness of resistant fit. Note that A}’, H* and S* are noted

in Subsection 3.1.

4. NUMERICAL ILLUSTRATIONS

Example 1. The census-tract data (Johnson and Wichern, 1992, Table
8.2. p. 392) provids 14 tract infomations on 5 socioeconomic variables for the
Madison, Wisconsin area. Choi and Huh (1994) applied the resistant principal

component analysis to this data.
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The 2-dimensional h-plot is given in Fig. 1 with the goodness of fit 99.60%.
We note that since the variables MSY (median school years) and MVH(median
value home) have a similar pattern, their correlation is high and, naturally,
their angle must be small. Also TOP(total population), TOE(total employ-
ment) and HSE(health services employment) have the same characteristic vari-

ables and so their angles must be small. But these interpretations in Fig. 1

are not clear.
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Figure 1. Classical h-Plot Figure 2. Resistant A-1’lot

for the Census-Tract Data.

Now we will obtain the resistant h-plot. As noted in Subsection 3.1, we
use the Andrew’s (-) function with c=0.89 where (cr)? is 95 percentile point
of x? distribution with 3 degrees of freedom. And we use 1.54 for the median
scale estimate. Then the final weights used in computing resistant singular

value decomposition (3.1) are in the diagonal matrix
D, = diag(0.00,0.00,0.90, 0.43,0.76, 0.81,1.00,
0.00,0.91,0.88, 0.77, 0.00, 0.00, 0.00).

In D, the elements having 0.00 denote the notable observations in data. So
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in our census-tract data, we know that observations 1, 2, 8, 12, 13 and 14 are
notable.

The 2-dimensional resistant A-plot is shown in Fig. 2 with the goodness of
fit 99.99%. By reducing the influence of the notable observations, I'ig. 2 gives
somewhat lucid intepretations, i.e., the angles between the same characteristic

variables of Fig. 2 are smaller than those of Fig. 1.

Example 2. The open-closed book data (Mardia, Kent and Bibby, 1979,
Table 1.2.1) consists of five variables for eighty-eight observations. From this
data, as a matter of convenience we make an artificial data with the 4-th, 8-th,

..., 88-th observations of original data.

The 2-dimensional A-plot is given in Fig. 3 with the goodness of fit 96.52%.
Fig. 3 shows that though the variables Vec(Vectors) and Alg(Algebra) are
different type of examinations each other, their angle is amall and so they have
higher correlation. Also the variables Mec(Mechanics) and Vec(Vectors) must
have a small angle because their types of examinations are the same. And we
note that the variables Alg(Algebra), Ana(Analysis) and Stat(Statistics) must
have the same pattern. But Fig. 3 doesn’t give these clear interpretations.

Now consider the resistant h-plot with Andrew’s ¢(:) function as defined
in Example 1. And also we use the median scale estimator 1.54. Then we have

final weights used in computing resistant singular value decomposition
D,, = diag(0.79,0.85,0.89,1.00,0.80,0.58,0.47,
0.51,0.03,0.34,0.78,0.47,0.60,0.00,
0.40,0.11,0.40,0.57,0.49,0.00,0.76, 0.81).

In D,,, we note that the 9-th, 14-th and 20-th diagonal elements have 0.03,
0.00 and 0.00 respectively. So their numbers of original data are 36, 56 and 80
respectively.

Thus the resistant h-plot with the goodness of fit 99.58% is given in Fig.

4. It gives the precise display of variables by reducing the influence of notable
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observations. In particular, we note that their angles between the variables of

same pattern of Fig. 4 are smaller than those of Fig. 3.
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Figure 3. Classical A-Plot

for the Open-Closed Book Data.
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Figure 4. Resistant A-Plot
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