• Title/Summary/Keyword: single-hole

Search Result 500, Processing Time 0.026 seconds

A STUDY ON THE CHANGES IN DEGREE OF CONVERSION OF DUAL-CURE RESTORATIVE MATERIALS WITH TIME-ELAPSE (이중중합 수복재의 시간경과에 따른 중합도 변화)

  • Yang, Chul-Ho;Kim, Shin;Jeong, Tae-Sung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.3
    • /
    • pp.554-563
    • /
    • 1999
  • For the purpose of elucidating the polymerization modes of dual-cure restorative materials and comparing them with single-cure restorative materials, a study was performed on the light-cured composite resin, dual-cure composite resin, dual-cure glass ionomer cement and chemical-cure glass ionomer cement. By measuring the microhardness of each material at 0mm, 1mm and 3mm depth during initial 24 hours with predetermined interval, the state of polymerization and degree of conversion was indirectly evaluated for each material, and obtained results are as follows : 1. All of four materials tested showed significant increase in microhardness after 24hrs compared with just after curing starts. 2. In all materials except Ketac-fil, there showed a significant difference in microhardness between each depth at each time interval. 3. In the test of lap time till final curing for each material, the polymerization process was revealed to last longer in the dual-cure type materials than in single-cure type materials at 3mm depth. Based on the results above, it was demonstrated with materials of dual-cure mode that the degree of conversion increases by successive curing reactions even in the deeper layers where sufficient curing light is impermeable.

  • PDF

Establishment of a Safe Blasting Guideline for Pit Slopes in Pasir Coal Mine (파시르탄광의 사면안전을 위한 발파지침 수립 연구)

  • Choi, Byung-Hee;Ryu, Chang-Ha;SunWoo, Coon;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.418-426
    • /
    • 2008
  • A surface blasting method with a single tree face is currently used in Pasir Coal Mine in Indonesia. The single free face is usually the ground surface. This kind of blasting method is easy to use but inevitably causes enormous ground vibrations, which, in turn, can affect the stability of the slopes comprising the various boundaries of the open pit mine. In this regard, we decided to make a specific blasting guideline for the control of found vibrations to ensure the safety of the pit slopes and waste dumps of the mine. Firstly, we derived a prediction equation for the ground vibration levels that could be occurred during blasting in the pits. Then, we set the allowable levels of ground vibrations for the pit slopes and waste dumps as peak particle velocities of 120mm/s and 60mm/s, respectively. From the prediction equation and allowable levels, safe scaled distances were established for field use. The blast design equations for the pit slopes and waste dumps were $D_s{\geq}5\;and\;D_S{\geq}10$ respectively. We also provide several standard blasting patterns for the hole depths of $3.3{sim}8.8m$.

Expression of Cytokines in Radiation Injured Brain at Acute Phase

  • Lee, Jang-Bo;Kim, Min-Ho;Chung, Yong-Gu;Park, Jung-Yul
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.3
    • /
    • pp.200-204
    • /
    • 2007
  • Objective : Radiation therapy is an important treatment for brain tumor. However, serious complications such as radiation necrosis can occur and it may be secondary to the expression of acute phase genes, like cytokines. In particular, inflammatory cytokines (IL-$1{\beta}$, TNF-${\alpha}$) and other immunomodulatory cytokines (TNF-${\alpha}$, TGF-${\beta}1$) might be changed after irradiation (high single dose irradiation). Although it has been reported that IL-1 level is remarkably elevated within 8 week after the irradiation to the rat brain. the change of cytokines levels at acute phase (within 24 hours) has not been reported. In the present study, we examined TNF-${\alpha}$, TGF-${\beta}1$, and IL-$1{\beta}$ levels in acute phase to clarify the early effect of cytokines on the radiation-induced brain damage. Methods : Fifty Sprague-Dawley rats were used and these were divided into irradiation group and control group. After a burr-hole trephination on the right parietal area using a drill, a single 10Gy was irradiated at the trephined site. Their forebrains were extirpated at 30 min, 2 hr, 8 hr, 12 hr and 24 hr, respectively and examined for the expression of TNF-${\alpha}$, TGF-${\beta}1$, and IL-$1{\beta}$. Results : The expression of TNF-${\alpha}$ and TGF-${\beta}1$ were decreased until 12 hr after irradiation but elevated thereafter. The expression of IL-1 was peak at 8 hr and then decreased until 12 hr but elevated after this time window. The present study indicated that expression of cytokines (TNF-${\alpha}$, TGF-${\beta}1$ and IL-$1{\beta}$) were increased at 24 hr after the irradiation to the rat brain. IL-$1{\beta}$ level, on the other hand. reached peak at 8 hr after radiation injury. Conclusion : These findings indicate that IL-1, among various cytokines, may have a more important role in the inflammatory reaction by radiation injury at acute phase and provide some clues for better understanding of the pathogenesis of radiation injury.

Atmospheric Turbulence Simulator for Adaptive Optics Evaluation on an Optical Test Bench

  • Lee, Jun Ho;Shin, Sunmy;Park, Gyu Nam;Rhee, Hyug-Gyo;Yang, Ho-Soon
    • Current Optics and Photonics
    • /
    • v.1 no.2
    • /
    • pp.107-112
    • /
    • 2017
  • An adaptive optics system can be simulated or analyzed to predict its closed-loop performance. However, this type of prediction based on various assumptions can occasionally produce outcomes which are far from actual experience. Thus, every adaptive optics system is desired to be tested in a closed loop on an optical test bench before its application to a telescope. In the close-loop test bench, we need an atmospheric simulator that simulates atmospheric disturbances, mostly in phase, in terms of spatial and temporal behavior. We report the development of an atmospheric turbulence simulator consisting of two point sources, a commercially available deformable mirror with a $12{\times}12$ actuator array, and two random phase plates. The simulator generates an atmospherically distorted single or binary star with varying stellar magnitudes and angular separations. We conduct a simulation of a binary star by optically combining two point sources mounted on independent precision stages. The light intensity of each source (an LED with a pin hole) is adjustable to the corresponding stellar magnitude, while its angular separation is precisely adjusted by moving the corresponding stage. First, the atmospheric phase disturbance at a single instance, i.e., a phase screen, is generated via a computer simulation based on the thin-layer Kolmogorov atmospheric model and its temporal evolution is predicted based on the frozen flow hypothesis. The deformable mirror is then continuously best-fitted to the time-sequenced phase screens based on the least square method. Similarly, we also implement another simulation by rotating two random phase plates which were manufactured to have atmospheric-disturbance-like residual aberrations. This later method is limited in its ability to simulate atmospheric disturbances, but it is easy and inexpensive to implement. With these two methods, individually or in unison, we can simulate typical atmospheric disturbances observed at the Bohyun Observatory in South Korea, which corresponds to an area from 7 to 15 cm with regard to the Fried parameter at a telescope pupil plane of 500 nm.

A Study on Batch-Type Remote Plasma Dry Cleaning Process for Native Oxide Removal (배치식 플라즈마 세정 설비를 이용한 자연산화막 제거 공정)

  • Park, Jae-Young;Yi, Wook-Yeol;Hyung, Yong-Woo;Nam, Seok-Woo;Lee, Hyeon-Deok;Song, Chang-Lyong;Kang, Ho-Kyu;Roh, Yong-Han
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.247-251
    • /
    • 2004
  • 반도체 소자의 제조에 있어 실리콘 표면에 성장한 자연산화막을 제거하기 위해 일반적으로 습식 세정 기술이 이용되어 왔다. 하지만 소자의 최소 선폭(design rule)이 nano급으로 고집적화 됨에 따라 contact hole 바닥의 자연산화막을 깨끗이 제거하는데 있어서 그 한계를 나타나고 있다. 이에 대한 효과적인 대안 공정으로 가스 건식 세정 기술이 연구되고 있다. 본 논문에서는 한 번에 50매 이상의 웨이퍼를 처리함으로써 생산성 측면에서 월등한 배치식 설비에서 원거리 플라즈마(remote plasma) 장치에서 2.450Hz의 마이크로웨이브(${\mu}$-wave)에 의해 형성시킨 수소라디칼과 $NF_3$ 가스를 이용하여 실리콘에 결함을 주지 않고 자연산화막을 선택적으로 제거하는 공정에 대해 고찰하였다. AFM을 이용한 표면분석, TEM을 이용한 물성분석, 그리고 ToF-SIMS 및 XPS를 이용한 화학 분석을 습식 및 건식 세정을 비교 평가한 결과, 건식 세정 공정이 실리콘 표면에 결함을 주지 않고 자연산화막을 제거 할 수 있음을 확인하였다. 산화막$(SiO_2)$, 질화막$(Si_3N_4)$, 그리고 다결정 실리콘(Poly-Si) 등의 각 막질별 식각 특성을 고찰하였으며, $NH_3$의 캐리어 가스인 $N_2$의 주입량을 조절함으로써 수소라디칼 형성 효율의 개선이 가능하였으며, 이로부터 게이트와 소스/드레인 사이를 절연하기 위해 이용되는 질화막의 식각 선택비를 2배 정도 개선할 수 있었다. nano급 소자에 실장하여 평가한 결과에서 불산(HF)에 의한 습식 세정 방식에 비하여 약 $20{\sim}50%$ 정도의 contact 저항 감소 효과가 있음이 확인되었다.두 소자 모두 $40mA/cm^2$ 에서 이상적인 화이트 발란스와 같은(0.33,0.33)의 색좌표를 보였다.epsilon}_0=1345$의 빼어난 압전 및 유전특성과 $330^{\circ}C$의 높은 $T_c$를 보였고 그 조성의 vibration velocity는 약4.5 m/s로 나타났다.한 관심이 높아지고 있다. 그러나 고 자장 영상에서의 rf field 에 의한 SAR 증가는 중요한 제한 요소로 부각되고 있다. 나선주사영상은 SAR 문제가 근원적으로 발생하지 않고, EPI에 비하여 하드웨어 요구 조건이 낮아 고 자장에서의 고속영상방법으로 적합하다. 본 논문에서는 고차 shimming 을 통하여 불균일도를 개선하고, single shot 과 interleaving 을 적용한 multi-shot 나선주사영상 기법으로 $100{\times}100$에서 $256{\times}256$의 고해상도 영상을 얻어 고 자장에서 초고속영상기법으로 다양한 적용 가능성을 보였다. 연구에서 연구된 $[^{18}F]F_2$가스는 친핵성 치환반응으로 방사성동위원소를 도입하기 어려운 다양한 방사성의 약품개발에 유용하게 이용될 수 있을 것이다.었으나 움직임 보정 후 영상을 이용하여 비교한 경우, 결합능 변화가 선조체 영역에서 국한되어 나타나며 그 유의성이 움직임 보정 전에 비하여 낮음을 알 수 있었다. 결론: 뇌활성화 과제 수행시에 동반되는 피험자의 머리 움직임에 의하여 도파민 유리가 과대평가되었으며 이는 이 연구에서 제안한 영상정합을 이용한 움직임 보정기법에 의해서 개선되었다. 답이 없는 문제, 문제 만들기, 일반화가 가능한 문제 등으로 보고, 수학적 창의성 중 특히 확산적 사고에 초점을 맞추어 개방형 문제가 확

  • PDF

Improvement of Cu2ZnSnS4 Solar Cell Characteristics with Zn(Ox,S1-x) Buffer Layer (Zn(Ox,S1-x) 버퍼층 적용을 통한 Cu2ZnSnS4 태양전지 특성 향상)

  • Yang, Kee-Jeong;Sim, Jun-Hyoung;Son, Dae-Ho;Lee, Sang-Ju;Kim, Young-Ill;Yoon, Do-Young
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.93-98
    • /
    • 2017
  • This experiment investigated characteristic changes in a $Cu_2ZnSnS_4$(CZTS) solar cell by applying a $Zn(O_x,S_{1-x})$ butter layer with various compositions on the upper side of the absorber layer. Among the four single layers such as $Zn(O_{0.76},S_{0.24})$, $Zn(O_{0.56},S_{0.44})$, $Zn(O_{0.33},S_{0.67})$, and $Zn(O_{0.17},S_{0.83})$, the $Zn(O_{0.76},S_{0.24})$ buffer layer was applied to the device due to its bandgap structure for suppressing electron-hole recombination. In the application of the $Zn(O_{0.76},S_{0.24})$ buffer layer to the device, the buffer layer in the device showed the composition of $Zn(O_{0.7},S_{0.3})$ because S diffused into the buffer layer from the absorber layer. The $Zn(O_{0.7},S_{0.3})$ buffer layer, having a lower energy level ($E_V$) than a CdS buffer layer, improved the $J_{SC}$ and $V_{OC}$ characteristics of the CZTS solar cell because the $Zn(O_{0.7},S_{0.3})$ buffer layer effectively suppressed electron-hole recombination. A substitution of the CdS buffer layer by the $Zn(O_{0.7},S_{0.3})$ buffer layer improved the efficiency of the CZTS solar cell from 2.75% to 4.86%.

Study on Applicability of Simultaneous Multiple Compaction Grouting Method in Soft Clay Ground (점성토 연약지반에서의 다중 동시주입 컴팩션 그라우팅 공법 적용성 연구)

  • Lee, Hyobum;Jung, Hyun-Seok;Jung, Eui-Youp;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.779-788
    • /
    • 2019
  • The compaction grouting method is one of the conventional ground improvement methods, which consolidates and compacts the surrounding ground through the injection of grout materials with low mobility. Injecting the grout into the ground can improve the soil properties, as well as form a composite of soil-grout columns. However, the conventional grout pumping is not applicable to handle multiple injection holes at the same time, which may diminish its constructability when the construction time is not enough. This paper proposes a simultaneous multiple compaction-grouting method using a new pump system developed to cover up simultaneously three injection holes at a time. Field injection tests with a single injection hole and with triangular arrangement of injection holes were conducted to evaluate the applicability of the proposed method to soft clay ground. In addition, a series of standard penetration tests (SPTs) were performed to assess the efficiency of each arrangement in improving the soft ground. It is noted from the in-situ test results that the interval distances between injection holes and the elapse time for ground stabilization are the crucial factors governing the applicability of the simultaneous multiple compaction-grouting method to improve the soft clay ground.

Growth and characterization of semi-insulating GaAs co-doped with Cr and In by vertical gradient freeze technique (수직온도구배냉각법으로 크롬과 인듐이 함께 도핑된 반절연 갈륨비소 단결정의 성장 및 특성평가)

  • Young Ju Park;Suk-Ki Min;Kee Dae Shim;Mann J. Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.1
    • /
    • pp.83-91
    • /
    • 1994
  • We have constructed a vertical gradient freeze (VGF) grower for GaAs single crystals 2 inch in diameter and have grown semi-insulating GaAs co-doped with Cr and In. For the co-doped crystal, the segregation coefficients of the dopants remain unchanged when compared to those doped with only Cr or In. The concentration of Cr and in atoms range from about $2{\Times}10_{16} to 3{imes}10^{17} cm^{-3}$ and $2{\Times}10^{19} to 3{\Times}10^{20} cm^{-3}$ at the seed to the tail part of the grown crystal, respectively. The averaged dislocation etch pit density is found to be less than $8000 cm^{-2}$ throughout the ingot. It is also found that there is some evidence of lattice hardening for the crystal in which the dislocation density is decreased to less than $1000 cm^{-2}$ as In concentration increases. The resistivity increases abruptly from $10^{-2}$ up to $10^8$ Ohm-cm, while the carrier concentration decreases from $10^{16}$ to $10^8 cm^{-3}$ along the growth direction of the GaAs crystal. Semi-insulating properties can be obtained above a critical concentration of Cr of about $6{\Times}10{^16} cm^{-3}$ in the crystal. The main deep levels existing in the GaAs: Cr,In sample are two electron traps at $E_C-0.81eV, E_C-0.35eV$, and two hole traps at $E_V+0.89eV, E_V+0.65eV$.

  • PDF

Structural, Optical, and Electrical Characterization of p-type Graphene for Various AuCl3 Doping Concentrations (AuCl3를 도핑하여 제작한 p형 그래핀의 도핑농도에 따른 구조적, 광학적, 및 전기적 특성 연구)

  • Kim, Sung;Shin, Dong Hee;Choi, Suk-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.5
    • /
    • pp.270-275
    • /
    • 2013
  • Single-layer graphene layers have been synthesized by using chemical vapor deposition, subsequently transferred on 300 nm $SiO_2/Si$ and quartz substrates, and doped with $AuCl_3$ by spin coating for various doping concentrations ($n_D$) from 1 to 10 mM. Based on the $n_D$-dependent variations of Raman frequencies/peak-intensity ratios, sheet resistance, work function, and Dirac point, measured by structural, optical, and electrical analysis techniques, the p-type nature of graphene is shown to be strengthened with increasing $n_D$. Especially, as estimated from the drain current-gate voltage curves of graphene field effect transistors, the hole mobility is very little varied with increasing $n_D$, in strong contrast with the $n_D$-dependent large variation of electron mobility. These results suggest that $AuCl_3$ is one of the best p-type dopants for graphene and is promising for device applications of the doped graphene.

Characteristics of SiO2/Si Quantum Dots Super Lattice Structure Prepared by Magnetron Co-Sputtering Method (마그네트론 코스퍼터링법으로 형성한 SiO2/Si 양자점 초격자 구조의 특성)

  • Park, Young-Bin;Kim, Shin-Ho;Ha, Rin;Lee, Hyun-Ju;Lee, Jung-Chul;Bae, Jong-Seong;Kim, Yang-Do
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.586-591
    • /
    • 2010
  • Solar cells have been more intensely studied as part of the effort to find alternatives to fossil fuels as power sources. The progression of the first two generations of solar cells has seen a sacrifice of higher efficiency for more economic use of materials. The use of a single junction makes both these types of cells lose power in two major ways: by the non-absorption of incident light of energy below the band gap; and by the dissipation by heat loss of light energy in excess of the band gap. Therefore, multi junction solar cells have been proposed as a solution to this problem. However, the $1^{st}$ and $2^{nd}$ generation solar cells have efficiency limits because a photon makes just one electron-hole pair. Fabrication of all-silicon tandem cells using an Si quantum dot superlattice structure (QD SLS) is one possible suggestion. In this study, an $SiO_x$ matrix system was investigated and analyzed for potential use as an all-silicon multi-junction solar cell. Si quantum dots with a super lattice structure (Si QD SLS) were prepared by alternating deposition of Si rich oxide (SRO; $SiO_x$ (x = 0.8, 1.12)) and $SiO_2$ layers using RF magnetron co-sputtering and subsequent annealing at temperatures between 800 and $1,100^{\circ}C$ under nitrogen ambient. Annealing temperatures and times affected the formation of Si QDs in the SRO film. Fourier transform infrared spectroscopy (FTIR) spectra and x-ray photoelectron spectroscopy (XPS) revealed that nanocrystalline Si QDs started to precipitate after annealing at $1,100^{\circ}C$ for one hour. Transmission electron microscopy (TEM) images clearly showed SRO/$SiO_2$ SLS and Si QDs formation in each 4, 6, and 8 nm SRO layer after annealing at $1,100^{\circ}C$ for two hours. The systematic investigation of precipitation behavior of Si QDs in $SiO_2$ matrices is presented.