Browse > Article
http://dx.doi.org/10.9713/kcer.2017.55.1.93

Improvement of Cu2ZnSnS4 Solar Cell Characteristics with Zn(Ox,S1-x) Buffer Layer  

Yang, Kee-Jeong (Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science & Technology (DGIST))
Sim, Jun-Hyoung (Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science & Technology (DGIST))
Son, Dae-Ho (Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science & Technology (DGIST))
Lee, Sang-Ju (Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science & Technology (DGIST))
Kim, Young-Ill (Convergence Research Center for Solar Energy, Daegu Gyeongbuk Institute of Science & Technology (DGIST))
Yoon, Do-Young (Department of Chemical Engineering, Kwangwoon University)
Publication Information
Korean Chemical Engineering Research / v.55, no.1, 2017 , pp. 93-98 More about this Journal
Abstract
This experiment investigated characteristic changes in a $Cu_2ZnSnS_4$(CZTS) solar cell by applying a $Zn(O_x,S_{1-x})$ butter layer with various compositions on the upper side of the absorber layer. Among the four single layers such as $Zn(O_{0.76},S_{0.24})$, $Zn(O_{0.56},S_{0.44})$, $Zn(O_{0.33},S_{0.67})$, and $Zn(O_{0.17},S_{0.83})$, the $Zn(O_{0.76},S_{0.24})$ buffer layer was applied to the device due to its bandgap structure for suppressing electron-hole recombination. In the application of the $Zn(O_{0.76},S_{0.24})$ buffer layer to the device, the buffer layer in the device showed the composition of $Zn(O_{0.7},S_{0.3})$ because S diffused into the buffer layer from the absorber layer. The $Zn(O_{0.7},S_{0.3})$ buffer layer, having a lower energy level ($E_V$) than a CdS buffer layer, improved the $J_{SC}$ and $V_{OC}$ characteristics of the CZTS solar cell because the $Zn(O_{0.7},S_{0.3})$ buffer layer effectively suppressed electron-hole recombination. A substitution of the CdS buffer layer by the $Zn(O_{0.7},S_{0.3})$ buffer layer improved the efficiency of the CZTS solar cell from 2.75% to 4.86%.
Keywords
Solar cell; CZTS; Buffer layer; Open circuit voltage; Current density;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Platzer-Bjorkman, C., Torndahl, T., Abou-Ras, D., Malmström, J., Kessler, J. and Stolt, L., "$(Zn(O_x,S_{1-x})$ Buffer Layers by Atomic Layer Deposition in $Cu(In,Ga)Se_2$ Based Thin Film Solar Cells: Band Alignment and Sulfur Gradient," J. Appl. Phys., 100, 044506(2006).   DOI
2 Larina, L., Shin, D., Kim, J. H. and Ahn, B. T., "Alignment of Energy Levels at the $ZnS/Cu(In,Ga)Se_2$ Interface," Energy Environ. Sci., 4, 3487-3493(2011).   DOI
3 Ericson, T., Scragg, J. J., Hultqvist, A., Watjen, J. T., Szaniawski, P., Torndahl, T. and Platzer-Bjorkman, C., "Zn(O, S) Buffer Layers and Thickness Variations of CdS Buffer for $Cu_2ZnSnS_4$ Solar Cells," IEEE J. Photovolt., 4(1), 465-469(2014).   DOI
4 Kobayashi, T., Kumazaw, T., Kao, Z. J. L. and Nakada, T., "$Cu(In,Ga)Se_2$ Thin Film Solar Cells with a Combined $ALD-(Zn(O_x,S_{1-x})$ Buffer and MOCVD-ZnO:B Window Layers," Sol. Energy Mat. Sol. Cells, 119, 129-133(2013).   DOI
5 Barkhouse, D. A. R., Haight, R., Sakai, N., Hiroi, H., Sugimoto, H. and Mitzi, D. B., "Cd-free Buffer Layer Materials on $Cu_2ZnSn(S_xSe_{1-x})_4$: Band Alignments with ZnO, ZnS, and $In_2S_3$," APL, 100, 193904(2012).
6 Klenk, R., Steigert, A., Rissom, T., Greiner, D., Kaufmann, C. A., Unold, T. and Lux-Steiner, M. C., "Junction Formation by $(Zn(O_x,S_{1-x})$ Sputtering Yields CIGSe Based Cells with Efficiencies Exceeding 18%," Prog. Photovolt: Res. Appl., 22, 161-165(2014).   DOI
7 Hultqvist, A., Platzer-Bjorkman, C., Coronel, E. and Edoff, M., "Experimental Investigation of $Cu(In_{1-x},Ga_x)Se_2/Zn(O_{1-z},S_z)$ Solar Cell Performance," Sol. Energy Mat. Sol. Cells, 95, 497-503(2011).   DOI
8 Hallegatte, S., Bangalore, M., Bonzanigo, L., Fay, M., Kane, T., Narloch, U., Rozenberg, J., Treguer, D. and Vogt-Schilb, A., "Shock Waves: Managing the Impacts of Climate Change on Poverty,"World Bank Group, USA(2016).
9 Huang, S., Luo, W. and Zou, Z., "Band Positions and Photoelectrochemical Properties of $Cu_2ZnSnS_4$ Thin Films by the Ultrasonic Spray Pyrolysis Method," J. Phys. D: Appl. Phys., 46, 235108(2013).   DOI
10 Shin, D. H., Kim, J. H., Shin, Y. M., Yoon, K. H., Al-Ammar, E. A. and Ahn, B. T., "Improvement of the Cell Performance in the $ZnS/Cu(In,Ga)Se_2$ Solar Cells by the Sputter Deposition of a Bilayer ZnO: Al Film," Prog. Photovolt: Res. Appl., 21, 217-225(2013).   DOI
11 Schmid, D., Ruckh, M. and Schock, H. W., "A Comprehensive Characterization of the Interfaces in Mo/CIS/CdS/ZnO Solar Cell Structures," Sol. Energy Mat. Sol. Cells, 41/42, 281-294(1996).   DOI
12 Minemoto, T., Hashimoto, Y., Satoh, T., Negami, T., Takakura, H. and Hamakawa, Y., "$Cu(In,Ga)Se_2$ Solar Cells with Controlled Conduction Band Offset of $Window/Cu(In,Ga)Se_2$ Layers," J. Appl. Phys., 89(12), 8327-8330(2001).   DOI
13 Persson, C., "Strong Valence-band Offset Bowing of $ZnO_{1-x}S_x$ Enhances p-Type Nitrogen Doping of ZnO-like Alloys," Phys. Rev. Lett. PRL, 97, 146403(2006).   DOI
14 Chen, S., Walsh, A., Yang, J. H., Gong, X. G., Sun, L., Yang, P. X., Chu, J. H. and Wei, S. H., "Compositional Dependence of Structural and Electronic Properties of $Cu_2ZnSn(S,Se)_4$ Alloys for Thin Film Solar Cells," Phys. Rev. B, 83, 125201(2011).   DOI
15 Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W. and Powalla, M., "Effects of Heavy Alkali Elements in $Cu(In,Ga)Se_2$ Solar Cells with Efficiencies up to 22.6%," Phys. Status Solidi RRL, 10(8), 583-586(2016).   DOI
16 Wadia, C., Alivisatos, A. P. and Kammen, D. M., "Materials Availability Expands the Opportunity for Large-Scale Photovoltaics Deployment," Environ. Sci. Technol., 43, 2072-2077(2009).   DOI
17 Jean, J., Brown, P. R., Jaffe, R. L., Buonassisi, T. and Bulovic, V., "Pathways for Solar Photovoltaics," Energy Environ. Sci., 8, 1200-1219(2015).   DOI
18 Ramasamy, K., Malik, M. A. and O'Brien, P., "Routes to Copper Zinc Tin Sulfide $Cu_2ZnSnS_4$ a Potential Material for Solar Cells," Chem. Commun., 48, 5703-5714(2012).   DOI
19 Zhang, S. B., Wei, S. H. and Zunger, A., "A Phenomenological Model for Systematization and Prediction of Doping Limits in II-VI and I-III-$VI_2$Compounds," J. Appl. Phys., 83(6), 3192-3196(1998).   DOI
20 Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E. D., "Solar Cell Efficiency Tables (version 46)," Prog. Photovolt: Res. Appl., 23, 805-812(2015).   DOI
21 Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y. and Mitzi, D. B., "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Adv. Energ. Mater., 4, 1301465(2014).   DOI
22 Son, D., Kim, D., Park, S., Yang, K., Nam, D., Cheong, H. and Kang, J., "Growth and Device Characteristics of CZTSSe Thin-Film Solar Cells with 8.03% Efficiency," Chem. Mater., 27, 5180-5188 (2015).   DOI
23 Huang, T. J., Yin, X., Qi, G. and Gong, H., "CZTS-based Materials and Interfaces and Their Effects on the Performance of Thin Film Solar Cells," Phys. Stat. Sol., 8(9), 735-762(2014).   DOI
24 Yang, K., Sim, J., Son, D., Kim, D., Kim, G. Y., Jo, W., Song, S., Kim, J., Nam, D., Cheong, H. and Kang, J., "Effects of the Compositional Ratio Distribution with Sulfurization Temperatures in the Absorber Layer on the Defect and Surface Electrical Characteristics of $Cu_2ZnSnS_4$ Solar Cells," Prog. Photovolt: Res. Appl., 23, 1771-1784(2015).   DOI
25 Fairbrother, A., Fontane, X., Izquierdo-Roca, V., Placidi, M., Sylla, D., Espindola-Rodriguez, M., Lopez-Marino, S., Pulgarin, F. A., Vigil-Galan, O., Perez-Rodriguez, A. and Saucedo, E., "Secondary Phase Formation in Zn-rich $Cu_2ZnSnSe_4$-based Solar Cells Annealed in Low Pressure and Temperature Conditions," Prog. Photovolt: Res. Appl., 22, 479-487(2014).   DOI
26 Winkler, M. T., Wang, W., Gunawan, O., Hovel, H. J., Todorov, T. K. and Mitzi, D. B., "Optical Designs that Improve the Efficiency of $Cu_2ZnSn(S,Se)_4$ Solar Cells," Energy Environ. Sci., 7, 1029-1036(2014).   DOI
27 Vigil-Galan, O., Espindola-Rodriguez, M., Courel, M., Fontane, X., Sylla, D., Izquierdo-Roca, V., Fairbrother, A., Saucedo, E. and Perez-Rodriguez, A., "Secondary Phases Dependence on Composition Ratio in Sprayed $Cu_2ZnSnS_4$ Thin Films and Its Impact on the High Power Conversion Efficiency," Sol. Energ. Mater. Sol. Cells, 117, 246-250(2013).   DOI
28 Colombara, D., Robert, E. V. C., Crossay, A., Taylor, A., Guennou, M., Arasimowicz, M., Malaquias, J. C. B., Djemour, R. and Dale, P. J., "Quantification of Surface ZnSe in $Cu_2ZnSnS_4$-Based Solar Cells by Analysis of the Spectral Response," Sol. Energ. Mater. Sol. Cells, 123, 220-227(2014).   DOI
29 Watjen, J. T., Engman, J., Edoff, M. and Platzer-Bjorkman, C., "Direct Evidence of Current Blocking by ZnSe in $Cu_2ZnSnSe_4$ Solar Cells," Appl. Phys. Lett., 100, 173510(2012).   DOI
30 Kumar, M., Dubey, A., Adhikari, N., Venkatesan, S. and Qiao, Q., "Strategic Review of Secondary Phases, Defects and Defectcomplexes in Kesterite CZTS-Se Solar Cells," Energy Environ. Sci., 8, 3134-3159(2015).   DOI
31 Chen, S., Walsh, A., Gong, X. G. and Wei, S. H., "Classifi Cation of Lattice Defects in the Kesterite $Cu_2ZnSnS_4$ and $Cu_2ZnSnSe_4$ Earth-Abundant Solar Cell Absorbers," Adv. Mater., 25, 1522-1539(2013).   DOI
32 Chen, S., Yang, J., Gong, X. G., Walsh, A. and Wei, S., "Intrinsic Point Defects and Complexes in the Quaternary Kesterite Semiconductor $Cu_2ZnSnS_4$," Phys. Rev. B, 81, 245204(2010).   DOI
33 Yin, W. J., Wu, Y., Wei, S. H., Noufi, R., Al-Jassim, M. M. and Yan, Y., "Engineering Grain Boundaries in $Cu_2ZnSnSe_4$ for Better Cell Performance: A First-Principle Study," Adv. Energ. Mater., 4, 1300712(2014).   DOI
34 Yang, K., Son, D., Sung, S., Sim, J., Kim, Y., Park, S., Jeon, D., Kim, J., Hwang, D., Jeon, C., Nam, D., Cheong, H., Kang, J. and Kim, D., "A Band-gap-graded CZTSSe Solar Cell with 12.3% Efficiency," J. Mater. Chem. A, 4, 10151-10158(2016).   DOI
35 Yang, K., Sim, J., Jeon, B., Son, D., Kim, D., Sung, S., Hwang, D., Song, S., Khadka, D. B., Kim, J. and Kang, J., "Effects of Na and $MoS_2$ on $Cu_2ZnSnS_4$ Thin-film Solar Cell," Prog. Photovolt:Res. Appl., 23, 862-873(2015).   DOI
36 Yang, K., Sim, J., Son, D., Kim, D. and Kang, J., "Two Different Effects of Na on $Cu_2ZnSnS_4$ Thin-film Solar Cells," Curr. Appl. Phys., 15, 1512-1515(2015).   DOI
37 Woo, K., Kim, Y., Yang, W., Kim, K., Kim, I., Oh, Y., Kim, J. Y. and Moon, J., "Band-gap-graded$ Cu_2ZnSn(S_{1-x},Se_x)_4$ Solar Cells Fabricated by an Ethanol-based, Particulate Precursor Ink Route," Sci. Rep., 3, 3069(2013).   DOI
38 Wei, H., Ye, Z., Li, M., Su, Y., Yang, Z. and Zhang, Y., "Tunable Band Gap $Cu_2ZnSnS_{4x}Se_{4(1-x)}$ Nanocrystals: Experimental and First-principles Calculations," CrystEngComm, 13, 2222-2226(2011).   DOI
39 Malerba, C., Biccari, F., Ricardo, C. L. A., Valentini, M., Chierchia, R., Muller, M., Santoni, A., Esposito, E., Mangiapane, P., Scardi, P. and Mittiga, A., "CZTS Stoichiometry Effects on the Band Gap Energy," J. Alloys Compd, 582, 528-534(2014).   DOI
40 Bar, M., Schubert, B.A., Marsen, B., Wilks, R. G., Pookpanratana, S., Blum, M., Krause, S., Unold, T., Yang, W., Weinhardt, L., Heske, C. and Schock, H. W., "Cliff-like Conduction Band Offset and KCN-induced Recombination Barrier Enhancement at the $CdS/Cu_2ZnSnS_4$ Thin-film Solar Cell Heterojunction," APL, 99, 222105(2011).