Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.5.270

Structural, Optical, and Electrical Characterization of p-type Graphene for Various AuCl3 Doping Concentrations  

Kim, Sung (Department of Applied Physics, Kyung Hee University)
Shin, Dong Hee (Department of Applied Physics, Kyung Hee University)
Choi, Suk-Ho (Department of Applied Physics, Kyung Hee University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.5, 2013 , pp. 270-275 More about this Journal
Abstract
Single-layer graphene layers have been synthesized by using chemical vapor deposition, subsequently transferred on 300 nm $SiO_2/Si$ and quartz substrates, and doped with $AuCl_3$ by spin coating for various doping concentrations ($n_D$) from 1 to 10 mM. Based on the $n_D$-dependent variations of Raman frequencies/peak-intensity ratios, sheet resistance, work function, and Dirac point, measured by structural, optical, and electrical analysis techniques, the p-type nature of graphene is shown to be strengthened with increasing $n_D$. Especially, as estimated from the drain current-gate voltage curves of graphene field effect transistors, the hole mobility is very little varied with increasing $n_D$, in strong contrast with the $n_D$-dependent large variation of electron mobility. These results suggest that $AuCl_3$ is one of the best p-type dopants for graphene and is promising for device applications of the doped graphene.
Keywords
Graphene; $AuCl_3$; P doping; Doping concentration; Dirac point; Mobility; Sheet resistance; Work function; Transmittance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Ristein, Science 313, 1057 (2006).   DOI   ScienceOn
2 H. J. Shin, W. M. Choi, D. Choi, G. H. Han, S. M. Yoon, H. K. Park, S. W. Kim, Y. W. Jin, S. Y. Lee, J. M. Kim, J. Y. Choi, and Y. H. Lee, J. Am. Chem. Soc. 132, 15603 (2010).   DOI   ScienceOn
3 Y. Shi, K. K. Kim, A. Reina, M. Hofmann, L. J. Li, and J. Kong, ACS Nano 4, 2689 (2010).   DOI   ScienceOn
4 F. Gunes, H. J. Shin, C. Biswas, G. H. Han, E. S. Kim, S. J. Chae, J. Y. Choi, and Y. H. Lee, ACS Nano 4, 4595 (2010).   DOI   ScienceOn
5 K. K. Kim, A. Reina, Y. Shi, H. Park, L. J. Li, Y. H. Lee, and J. Kong, Nanotechnology 21, 285205 (2010).   DOI   ScienceOn
6 B. Shan and K. J. Cho, Phys. Rev. Lett. 94, 236602 (2005).   DOI   ScienceOn
7 S. Kim, D. H. Shin, C. O. Kim, S. S. Kang, J. M. Kim, C. W. Jang, S. S. Joo, J. S. Lee, J. H. Kim, S. H. Choi, and E. Hwang, ACS Nano 7, 5168 (2013).   DOI   ScienceOn
8 D. H. Shin, J. M. Kim, C. W. Jang, J. H. Kim, S. Kim, and S. H. Choi, J. Appl. Phys. 113, 064305 (2013).   DOI   ScienceOn
9 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320, 1308 (2008).   DOI   ScienceOn
10 A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006).   DOI   ScienceOn
11 X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, and L. J. Li, Small 5, 1422 (2009).   DOI   ScienceOn
12 D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y. M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris, Nano Lett. 9, 388 (2009).   DOI   ScienceOn
13 A. Pirkle, J. Chan, A. Venugopa, D. Hinojos, C. W. Magnuson, S. McDonne, L. Colombo, E. M. Voge, R. S. Ruoff, and R. M. Wallace, Appl. Phys. Lett. 99, 122108 (2011).   DOI   ScienceOn
14 C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nat. Nanotechnol. 5, 722 (2010).   DOI
15 H. Liu, Y. Liu, and D. Zhua, J. Mater. Chem. 21, 3335 (2011).   DOI   ScienceOn
16 J. R. Williams, L. DiCarlo, and C. M. Marcus, Science 317, 638 (2007).   DOI   ScienceOn
17 F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, Nature Photon. 4, 611 (2010).   DOI