• Title/Summary/Keyword: single electron control

Search Result 115, Processing Time 0.025 seconds

Single-Electron Devices for Hopfield Neural Network (홉필드 신경회로망을 위한 단일전자 소자)

  • Yu, Yun-Seop
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.16-21
    • /
    • 2008
  • This paper introduces a new type of Hopfield neural network using newly developed single-electron devices. In the electrical model of the Hopfield neural network, a single-electron synapse, used as a voltage(or current)-variable resistor, and two stages of single-electron inverters, used as a nonlinear activation function, are simulated with a single-electron circuit simulator using Monte-Carlo method to verily their operation.

Electron spin relaxation control in single electron QDs

  • Mashayekhi, M.Z.;Abbasian, K.;Shoar-Ghaffari, S.
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.203-210
    • /
    • 2013
  • So far, all reviews and control approaches of spin relaxation have been done on lateral single electron quantum dots. In such structures, many efforts have been done, in order to eliminate spin-lattice relaxation, to obtain equal Rashba and linear Dresselhaus parameters. But, ratio of these parameters can be adjustable up to 0.7 in a material like GaAs under high-electric field magnitudes. In this article we have proposed a single electron QD structure, where confinements in all of three directions are considered to be almost identical. In this case the effect of cubic Dresselhaus interaction will have a significant amount, which undermines the linear effect of Dresselhaus while it was destructive in lateral QDs. Then it enhances the ratio of the Rashba and Dresselhaus parameters in the proposed structure as much as required and decreases the spin states up and down mixing and the deviation angle from the net spin-down As a result to the least possible value.

Programming characteristics of single-poly EEPROM (Single-poly EEPROM 의 프로그램 특성)

  • 한재천;나기열;이성철;김영석
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.2
    • /
    • pp.131-139
    • /
    • 1996
  • Inthis apper wa analyzed the channel-hot-electron programming characteristics of the single-poly EEPROM with different control gate and drain structures. The single-poly EEPROM uses the p$^{+}$/n$^{+}$-diffusion in the n-well as a control gate instead of the second poly-silicon. The program and erase characteristics of the single-poly EEPROM were verified using the two-dimensional device simulator, MEDICI. The single-poly EEPROM was fabricated using 0.8$\mu$m ASIC CMOS process, and its CHE programming characteristics were measured using HP4155 parameteric analyzer and HP8110 pulse gnerator. Especially we investigated the CHE programming characteristics of the single-poly EEPROM with the p$^{+}$-diffusion or n$^{+}$-diffusion in the n-well as a control gate and the LDD or single-drain structure. The single-poly EEPROM with p$^{+}$-diffusion in the n-well as a control gate and single-drain structure was programmed to about VT$\thickapprox$5V with VDS=6V, VCG=12V(1ms pulse width).th).

  • PDF

The Electron Temperature and Density Properties of Mixed Gases in ICP Lighting System : (Ne:Xe, Ne:Ar) (ICP 광원 시스템의 Ne:Xe 및 Ne:Ar 혼합가스의 전자온도 및 전자밀도 특성)

  • Lee, Jong-Chan;Choi, Yong-Sung;Park, Dae-Hee;Choi, Gi-Seung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.3
    • /
    • pp.156-160
    • /
    • 2006
  • In whole world consciousness of environment maintenance have increased very quickly for the end of the 20th century. To use and disuse toxic substances have been controled at the field of industry. Also the field of lighting source belong to environmental control. And in the future the control will be strong. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem and root. In the mercury free lighting source system the Xe gas lamp is one type. And the Ne:Xe and Ne:Ar mixed gas lamp improve firing voltage of Xe gas lamp. Purpose of this study is to understand ideal mixing-ratio of Ne:Xe and Ne:Ar gas by electron temperature and electron density for mercury free lamp. Before ICP was designed, basic parameters of plasma, which are electron temperature and electron density, were measured and calculated by single-Langmuir probe. Property of electron temperature and electron density were confirmed by changing ratio of Ne:Xe and Ne:Ar.

Morphology Control of Single Crystalline Rutile TiO2 Nanowires

  • Park, Yi-Seul;Lee, Jin-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3571-3574
    • /
    • 2011
  • Nano-scaled metal oxides have been attractive materials for sensors, photocatalysis, and dye-sensitization for solar cells. We report the controlled synthesis and characterization of single crystalline $TiO_2$ nanowires via a catalyst-assisted vapor-liquid-solid (VLS) and vapor-solid (VS) growth mechanism during TiO powder evaporation. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies show that as grown $TiO_2$ materials are one-dimensional (1D) nano-structures with a single crystalline rutile phase. Also, energy-dispersive X-ray (EDX) spectroscopy indicates the presence of both Ti and O with a Ti/O atomic ratio of 1 to 2. Various morphologies of single crystalline $TiO_2$ nano-structures are realized by controlling the growth temperature and flow rate of carrier gas. Large amount of reactant evaporated at high temperature and high flow rate is crucial to the morphology change of $TiO_2$ nanowire.

Plasma Diagnosis of Ne:Xe, Ne:Ar Mixed Gases by Single Langmuir Probe in Inductively Coupled Plasma Light Source System (ICP 광원 시스템의 Ne:Xe, Ne:Ar 혼합가스의 단일탐침법을 이용한 플라즈마 진단)

  • Choi, Yong-Sung;Lee, Woo-Ki;Moon, Jong-Dae;Lee, Kyung-Sup;Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.91-95
    • /
    • 2006
  • In whole world consciousness of environment maintenance have increased very quickly for the end of the 20th century. To use and disuse toxic substances have been controled at the field of industry. Also the field of lighting source belong to environmental control. And in the future the control will be strong. In radiational mechanism of fluorescence lamp mechanism is the worst environmental problem. In radiational mechanism of fluorescence lamp mercury is the worst environmental problem root. In the mercury free lighting source system the Xe gas lamp is one type. And the Ne:Xe mixing gas lamp improvements firing voltage of Xe gas lamp. Purpose and subject of this study are understand, efficiency, ideal of Ne:Xe plasma which mercury free lamp. Before ICP was designed, basic parameters of plasma, which are electron temperature and electron density, were measured and calculated by Langmuir probe data. Property of electron temperature and electron density were confirmed by changing ratio of Ne:Xe.

  • PDF

AN ELECTRON MICROSCOPIC STUDY ON THE EFFECTS OF IRRADIATION ON THE ACINAR CELLS OF RAT PAROTID GLAND (방사선조사가 백서 이하선의 선세포에 미치는 영향에 관한 전자현미경적 연구)

  • Ko Kwang Jun;Lee Sang Rae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.18 no.1
    • /
    • pp.31-45
    • /
    • 1988
  • The author studied the histopathologic changes according to a single or a split dose and the time after irradiation on the acinar cells of rat parotid gland. 99 Sprague Dawley rats, weighing about l20gm, were divided into control and 3 experimental groups. In experimental groups, GroupⅠ and Ⅱ were delivered a single dose of l5Gy, 18Gy and Group Ⅲ and Ⅳ were delivered two equal split doses of 9Gy, 10.5Gy for a 4 hours interval, respectively. The experimental groups were delivered by a cobalt-60 teletherapy unit with a dose rate of 222cGy/min, source-skin distance of 50㎝, depth of l㎝ and a field size of l2×5㎝. The animals were sacrificed at 1, 2, 3, 6, 12 hours, 1, 3, 7 days after irradiation and examined by light and electron microscopy. The results were as follows: 1. As the radiation dose increased and the acinar cells delivered a single dose exposure were more damaged, and the change of acinar cells appeared faster than those of a split dose exposure. 2. The histopathologic change of acinar cells appeared at 1 hour after irradiation. The recovery from damaged acinar cells appeared at 1 day after irradiation and there was a tendency that the recovery from damage of a split dose exposure was somewhat later than that of a single dose exposure. 3. Light microscope showed atrophic change of acinar cells and nucleus, degeneration and vesicle formation of cytoplasm, widening of intercellular space and interlobular space. 4. Electron microscope showed loss of nuclear membrane, degeneration of nucleus and nucleoli, clumping of cytoplasm, widening and degeneration of rough endoplasmic reticulum, loss of cristae of mitochondria, lysosome, autophagosome and lipid droplet. 5. Electron microscopically, the change of rough endoplasmic reticulum was the most prominent and this appeared at 1 hour after irradiation as early changes of acinar cells. The nuclear change appeared at 2 hours after irradiation and the loss of cristae of mitochondria was observed at 2 hours after irradiation in all experimental groups.

  • PDF

Investigation of Tunneling Thickness of Fe-MgF2 Glanular Film for Single Electron Transistor Operation (단전자트랜지스터 동작을 위한 Fe-MgF2그래뉼라 필름의 두께에 대한 조사)

  • Byun, Beommo;Takayuki, Gakashi;Fukuchi, Atsushi;Masashi, Arita;Yasuo, Takahashi;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.477-478
    • /
    • 2019
  • We have investigated the experiments in which fabrication and characterization of single-electron transistors were conducted due to easy fabrication and high functionality. In the Fe-MgF2 granular film, in which Fe grains are distributed between insulators instead of the conventional quantum dots, it can be easily fabricated by EB deposition alone, and various output values can be expected by applying two or more gate voltages. The tunneling thickness of the film for single-electron operation was investigated and it was confirmed that the tunneling occurred at 2.1 nm.

  • PDF

The Effect of Substrate DC Bias on the Low -Temperature Si homoepitaxy in a Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (초고진공 전자 사이클로트론 화학 기상 증착 장치에 의한 저온 실리콘 에피 성장에 기판 DC 바이어스가 미치는 영향)

  • 태흥식;황석희;박상준;윤의준;황기웅;송세안
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.4
    • /
    • pp.501-506
    • /
    • 1993
  • The spatial potential distribution of electron cyclotron resonance plasma is measured as a function of tehsubstrate DC bias by Langmuir probe method. It is observed that the substrate DC bias changes the slope of the plasma potential near the subsrate, resulting in changes in flux and energy of the impinging ions across plasma $_strate boundary along themagnetric field. The effect of the substrate DC bias on the low-temperature silicon homoepitaxy (below $560^{\circ}C$) is examine dby in situ reflection high energy electron diffraction (RHEED), cross-section transmission electron microscopy (XTEM),plan-view TEM and high resolution transmision electron microscopy(HRTEM). While the polycrystalline silicon layers are grow withnegative substrate biases, the single crystaline silicon layers are grown with negative substrate biases, the singel crystalline silicon layers are grown with positive substrate biases. As the substrate bias changes form negative to positive values, the growth rate decreases. It is concluded that the control of the ion energy during plasma deposition is very important in silicon epitaxy at low temperatures below $560^{\circ}C$ by UHV-ECRCVD.VD.

  • PDF