DOI QR코드

DOI QR Code

Electron spin relaxation control in single electron QDs

  • Mashayekhi, M.Z. (School of Engineering Emerging-Technologies, University of Tabriz) ;
  • Abbasian, K. (School of Engineering Emerging-Technologies, University of Tabriz) ;
  • Shoar-Ghaffari, S. (School of Engineering Emerging-Technologies, University of Tabriz)
  • Received : 2013.03.07
  • Accepted : 2013.10.26
  • Published : 2013.12.25

Abstract

So far, all reviews and control approaches of spin relaxation have been done on lateral single electron quantum dots. In such structures, many efforts have been done, in order to eliminate spin-lattice relaxation, to obtain equal Rashba and linear Dresselhaus parameters. But, ratio of these parameters can be adjustable up to 0.7 in a material like GaAs under high-electric field magnitudes. In this article we have proposed a single electron QD structure, where confinements in all of three directions are considered to be almost identical. In this case the effect of cubic Dresselhaus interaction will have a significant amount, which undermines the linear effect of Dresselhaus while it was destructive in lateral QDs. Then it enhances the ratio of the Rashba and Dresselhaus parameters in the proposed structure as much as required and decreases the spin states up and down mixing and the deviation angle from the net spin-down As a result to the least possible value.

Keywords

References

  1. Abu-Safe, H.H. (2003), "High-field quantum transport in the inversion layer of a metal-oxide-semiconductor field effect transistor", Aplied Physic, 93, 4616-4621.
  2. Bulaev, D.V. and Loss, D. (2005), "Spin relaxation and anticrossing in quantum dots: Rashba versus Dresselhaus spin-orbit coupling", Phys. Rev. B, 71, 205324-205329. https://doi.org/10.1103/PhysRevB.71.205324
  3. Bychkov, Y.A. and Rashba, E.I. (1984), "Svoistva dvumernogo elektronnogo gaza so snyatym vyrozhdeniem spectra", Pis'ma v ZhETF, 39, 66-69.
  4. Bychkov, Y.A. and Rashba, E.I. (1984), "Properties of a 2D electron gas with lifted spectral degeneracy", JETP Lett., 39, 78-81.
  5. Darwin, C.G. (1930), "The diamagnetism of the free electron", Proc. Cambridge Philos. Soc. 27, 86.
  6. de Andrada e Silva, E.A., La Rocca, G.C. and Bassani, F. (1994), "Spin-split subbands and magneto-oscillations in III-V asymmetric heterostructures", Phys. Rev. B, 50, 8523-8533. https://doi.org/10.1103/PhysRevB.50.8523
  7. de Andrada e Silva, E.A., La Rocca, G.C. and Bassani, F. (1997), "Spin-orbit splitting of electronic states in semiconductor asymmetric quantum wells", Phys. Rev. B, 55, 16293-16299. https://doi.org/10.1103/PhysRevB.55.16293
  8. de Sousa, R. and Das Sarma, S. (2003), "Gate control of spin dynamics in III-V semiconductor quantum dots", Phys. Rev. B, 68, 155330-155335. https://doi.org/10.1103/PhysRevB.68.155330
  9. Dresselhaus, G. (1955), "Spin-orbit interaction in zinc-blende structures", Phys. Rev., 100, 580-586. https://doi.org/10.1103/PhysRev.100.580
  10. Fock, V. (1928), "Bemerkung zur quantelung des harmonischen oszillators im magnetfeld", Z. Phys., 47, 446-448. https://doi.org/10.1007/BF01390750
  11. Jacak, L., Wojs, A. and Hawrylak, P. (1998), Quantum Dots, Springer-Verlag, Berlin.
  12. Khaetskii, A.V. and Nazarov, Y.V. (2001), "Spin-flip transitions between Zeeman sublevels in semiconductor quantum dots", Phys. Rev. B, 64, 125316-125321. https://doi.org/10.1103/PhysRevB.64.125316
  13. Loss, D. and DiVincenzo, D.P. (1998), "Quantum computation with quantum dots", Phys. Rev. A, 57, 120-126. https://doi.org/10.1103/PhysRevA.57.120
  14. Miller, J.B., Zumb uhl, D.M., Marcus, C.M., Lyanda-Geller, Y.B., Goldhaber-Gordon, D., Campman, K. and Gossard, A.C. (2003), "Gate-controlled spin-orbit quantum interference effects in lateral transport", Phys. Rev. Lett., 90, 076807. https://doi.org/10.1103/PhysRevLett.90.076807