• Title/Summary/Keyword: single clock

Search Result 244, Processing Time 0.026 seconds

A practial design of direct digital frequency synthesizer with multi-ROM configuration (병렬 구조의 직접 디지털 주파수 합성기의 설계)

  • 이종선;김대용;유영갑
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3235-3245
    • /
    • 1996
  • A DDFS(Direct Digital Frequency Synthesizer) used in spread spectrum communication systems must need fast switching speed, high resolution(the step size of the synthesizer), small size and low power. The chip has been designed with four parallel sine look-up table to achieve four times throughput of a single DDFS. To achieve a high processing speed DDFS chip, a 24-bit pipelined CMOS technique has been applied to the phase accumulator design. To reduce the size of the ROM, each sine ROM of the DDFS is stored 0-.pi./2 sine wave data by taking advantage of the fact that only one quadrant of the sine needs to be stored, since the sine the sine has symmetric property. And the 8 bit of phase accumulator's output are used as ROM addresses, and the 2 MSBs control the quadrants to synthesis the sine wave. To compensate the spectrum purity ty phase truncation, the DDFS use a noise shaper that structure like a phase accumlator. The system input clock is divided clock, 1/2*clock, and 1/4*clock. and the system use a low frequency(1/4*clock) except MUX block, so reduce the power consumption. A 107MHz DDFS(Direct Digital Frequency Synthesizer) implemented using 0.8.mu.m CMOS gate array technologies is presented. The synthesizer covers a bandwidth from DC to 26.5MHz in steps of 1.48Hz with a switching speed of 0.5.mu.s and a turing latency of 55 clock cycles. The DDFS synthesizes 10 bit sine waveforms with a spectral purity of -65dBc. Power consumption is 276.5mW at 40MHz and 5V.

  • PDF

A 5.4Gb/s Clock and Data Recovery Circuit for Graphic DRAM Interface (그래픽 DRAM 인터페이스용 5.4Gb/s 클럭 및 데이터 복원회로)

  • Kim, Young-Ran;Kim, Kyung-Ae;Lee, Seung-Jun;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.19-24
    • /
    • 2007
  • With recent advancement of high-speed, multi-gigabit data transmission capabilities, serial links have been more widely adopted in industry than parallel links. Since the parallel link design forces its transmitter to transmit both the data and the clock to the receiver at the same time, it leads to hardware's intricacy during high-speed data transmission, large power consumption, and high cost. Meanwhile, the serial links allows the transmitter to transmit data only with no synchronized clock information. For the purpose, clock and data recovery circuit becomes a very crucial key block. In this paper, a 5.4Gbps half-rate bang-bang CDR is designed for the applications of high-speed graphic DRAM interface. The CDR consists of a half-rate bang-bang phase detector, a current-mirror charge-pump, a 2nd-order loop filter, and a 4-stage differential ring-type VCO. The PD automatically retimes and demultiplexes the data, generating two 2.7Gb/s sequences. The proposed circuit is realized in 66㎚ CMOS process. With input pseudo-random bit sequences (PRBS) of $2^{13}-1$, the post-layout simulations show 10psRMS clock jitter and $40ps_{p-p}$ retimed data jitter characteristics, and also the power dissipation of 80mW from a single 1.8V supply.

A Low Jitter Delay-Locked Loop for Local Clock Skew Compensation (로컬 클록 스큐 보상을 위한 낮은 지터 성능의 지연 고정 루프)

  • Jung, Chae-Young;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.309-316
    • /
    • 2019
  • In this paper, a low-jitter delay-locked loop that compensates for local clock skew is presented. The proposed DLL consists of a phase splitter, a phase detector(PD), a charge pump, a bias generator, a voltage-controlled delay line(VCDL), and a level converter. The VCDL uses self-biased delay cells using current mode logic(CML) to have insensitive characteristics to temperature and supply noises. The phase splitter generates two reference clocks which are used as the differential inputs of the VCDL. The PD uses the only single clock from the phase splitter because the PD in the proposed circuit uses CMOS logic that consumes less power compared to CML. Therefore, the output of the VCDL is also converted to the rail-to-rail signal by the level converter for the PD as well as the local clock distribution circuit. The proposed circuit has been designed with a $0.13-{\mu}m$ CMOS process. A global CLK with a frequency of 1-GHz is externally applied to the circuit. As a result, after about 19 cycles, the proposed DLL is locked at a point that the control voltage is 597.83mV with the jitter of 1.05ps.

Demonstration of CSRZ Signal Generator Using Single-Stage Mach-Zehnder Modulator and Wideband CMOS Signal Mixer

  • Kang, Sae-Kyoung;Lee, Dong-Soo;Cho, Hyun-Woo;Ko, Je-Soo
    • ETRI Journal
    • /
    • v.30 no.2
    • /
    • pp.249-254
    • /
    • 2008
  • In this paper, we demonstrate an electrically band-limited carrier-suppressed return-to-zero (EB-CSRZ) signal generator operating up to a 10 Gbps data rate comprising a single-stage Mach-Zehnder modulator and a wideband signal mixer. The wideband signal mixer comprises inverter stages, a mixing stage, and a gain amplifier. It is implemented by using a 0.13 ${\mu}m$ CMOS technology. Its transmission response shows a frequency range from DC to 6.4 GHz, and the isolation response between data and clock signals is about 21 dB at 6.4 GHz. Experimental results show optical spectral narrowing due to incorporating an electrical band-limiting filter and some waveform distortion due to bandwidth limitation by the filter. At 10 Gbps transmission, the chromatic dispersion tolerance of the EB-CSRZ signal is better than that of NRZ-modulated signal in single-mode fiber.

  • PDF

EMI Issues in Pseudo-Differential Signaling for SDRAM Interface

  • Jang, Young-Jae;Yi, Il-Min;Kim, Byungsub;Sim, Jae-Yoon;Park, Hong-June
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.455-462
    • /
    • 2015
  • H-field EMI measurements have been performed for the single-ended, the differential, and the pseudo-differential signaling on a 11" FR4 microstrip line. The pseudo-differential signaling reduces EMI by more than 10 dB compared to the single-ended signaling if the delay mismatch is lower than 5% of a period for a 3 GHz clock signal. Empirical H-field equations for both differential and single-ended signaling showed fair agreements with measurements.

Design of a Multiplier for Irreducible Polynomial that all Coefficient over GF($3^m$) (GF($3^m$)상에서 모든 항의 계수가 존재하는 기약다항식의 승산기 설계)

  • 이광희;황종학;박승용;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.79-82
    • /
    • 2002
  • In this paper, we proposed a multiplicative algorithm for two polynomials in existence coefficients over finite field GF(3$^{m}$ ). Using the proposed multiplicative algorithm, we constructed the multiplier of modular architecture with parallel in-output. The proposed multiplier is composed of (m+1)$^2$identical cells, each cell consists of single mod(3) additional gate and single mod(3) multiplicative gate. Proposed multiplier need single mod(3) multiplicative gate delay time and m mod(3) additional gate delay time not clock. Also, the proposed architecture is simple, regular and has the property of modularity, therefore well-suited for VLSI implementation.

  • PDF

Real-time Characteristic Analysis of A Micro Kernel for Supporting Reconfigurability (재구성된 마이크로 커널의 실시간 특성 분석)

  • 박종현;임강빈;정기현;최경희
    • Proceedings of the IEEK Conference
    • /
    • 2000.06c
    • /
    • pp.121-124
    • /
    • 2000
  • Goal of this Paper is to design and develop core kernel components f3r single processor real-time system, which include real-time schedulers, synchronization mechanism, IPC, message passing, and clock & timer. The goal also contains the basic researches on dynamic load balancing and scheduling which provide mechanism for the distributed information processing and efficient resource sharing among various information appliances based on network.

  • PDF

Enhancement of Clock Advancement in Parallel Logic Simulation (병렬처리 논리 시뮬레이션에서 클럭 진행의 개선)

  • 정연모
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.2
    • /
    • pp.15-25
    • /
    • 1994
  • Efficient event evaluation and propagation techniques are proposed to enhance the advancement of simulation clocks of conservative and optimistic logic simulation protocols on parallel processing environments. The first idea of the techniques proposed in this paper is to allow more than one event evaluation per simulation cycle and to pack more than one propagation event in a single message. The second idea is to use advancement windows resulted in good performance in parallelism and execution times.

  • PDF

Design of a fast double edge traiggered D-tyupe flip-flop (고속 듀얼 모서리 천이 D형 플립-플롭의 설계)

  • 박영수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.1
    • /
    • pp.10-14
    • /
    • 1998
  • In this paper a double edge triggered (DET) filp-flop is proposed which changes its output state at both the positive and the negative edge transitions of the triggering input. DET filp-flop has advantages in terms of speed and power dissipation over single edge triggered (SET) filp-flop has proposed DET flip-flop needs only 12 MOS transistors and can operate at clock speed of 500 MHz. Also, the power dissipation has decreased about 33% in comparison to SET flip-flop.

  • PDF

DEVELOPMENT OF THE READOUT CONTROLLER FOR INFRARED ARRAY (적외선검출기 READOUT CONTROLLER 개발)

  • Cho, Seoung-Hyun;Jin, Ho;Nam, Uk-Won;Cha, Sang-Mok;Lee, Sung-Ho;Yuk, In-Soo;Park, Young-Sik;Pak, Soo-Jong;Han, Won-Yong;Kim, Sung-Soo
    • Publications of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.67-74
    • /
    • 2006
  • We have developed a control electronics system for an infrared detector array of KASINICS (KASI Near Infrared Camera System), which is a new ground-based instrument of the Korea Astronomy and Space science Institute (KASI). Equipped with a $512{\times}512$ InSb array (ALADDIN III Quadrant, manufactured by Raytheon) sensitive from 1 to $5{\mu}m$, KASINICS will be used at J, H, Ks, and L-bands. The controller consists of DSP(Digital Signal Processor), Bias, Clock, and Video boards which are installed on a single VME-bus backplane. TMS320C6713DSP, FPGA(Field Programmable Gate Array), and 384-MB SDRAM(Synchronous Dynamic Random Access Memory) are included in the DSP board. DSP board manages entire electronics system, generates digital clock patterns and communicates with a PC using USB 2.0 interface. The clock patterns are downloaded from a PC and stored on the FPGA. UART is used for the communication with peripherals. Video board has 4 channel ADC which converts video signal into 16-bit digital numbers. Two video boards are installed on the controller for ALADDIN array. The Bias board provides 16 dc bias voltages and the Clock board has 15 clock channels. We have also coded a DSP firmware and a test version of control software in C-language. The controller is flexible enough to operate a wide range of IR array and CCD. Operational tests of the controller have been successfully finished using a test ROIC (Read-Out Integrated Circuit).