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Enhancement of Clock Advancement in Parallel Logic Simulation
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execution times.

Bbstract

Efficient event evaluation and propagation techniques are proposed to enhance the advancement
of simulation clocks of conservative and optimistic logic simulation protocols on parallel processing
environments. The first idea of the techniques proposed in this paper is to allow more than one
event evaluation per simulation cycle and to pack more than one propagation event in a single
message. The second idea is to use advancement windows in both simulation protocols. The proposed
multi-event techniques and advancement windows resulted in good performance in parallelism and

|

1. Introduction

In parallel logic simulation using traditional distributed
event-driven simulation protocols such as the Chandy-Misra
algorithm[3,4], which is a well-known conservative simula-
tion technique, and Time Warp[7,8], which is the most
popular optimistic simulation, an event is used to carry a
value associated with a timestamp, Each gate computes a local
virtual time (LVT) which is the smallest timestamp  of
unprocessed events, All the events with timestamps equal to
LVT are involved in event evaluation at ecach gate during a
simulation cycle (or iteration) based on the event selection
{or scheduling) policy of a simulation protocol. Event

evaluation means that an output value is computed based on
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the gate type with all the chosen events. After event
evaluation, an output event may be propagated to successors,

The main idea proposed in this paper is to allow more
than one event evaluation per simulation cycle and to pack
more than one propagation event in a single message, In
other words, evaluation of many events in each simulation
cycle is allowed, reducing the number of simulation cycles,
communication costs, and execution times. A sequence of
events to be propagated as a single message is called a mulli-
event in this paper. In parallel processing environments,
communication overhead becomes very significant as the
number of processors increases, With multi-events, we can
significantly reduce communication cost since a set of events

is sent as a single message,
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In conservative logic simulation, each gate computes an
advancement window containing events which can be safely
executed without violating event execution precedence. In
optimistic simulation, an aggressive advancement window is
given which contains events to be aggressively evaluated,
Mote than one evaluation is allowed per simulation cycle
even though rollback frequency increases,

The proposed advancement windows and multi-event
techniques wete implemented for some ISCAS'85 benchmark
circuits on the CM-2, Good petformance, measured by
parallelism and execution time, was obtained for some
benchmark circuits, We investigate the effects of window sizes
on performance, As the window size increases, execution time
decreases initially, but then increases since time taken for each

simulation cycle increases due to the increases window size.
2. Multiple Events in a Message

Gate-level logic simulation is different from other simula-
tions, such as queueing network simulation, high level circuit
simulations, ctc, since simulation is performed based on fixed
propagation routing, fixed delay, good lookahead capabilities,
and non-preemption, The fixed propagation routing allows a
gate to execute more than one event in a simulation cycle

based on a specific simulation protocol: optimistic ot

a) the format of muiti - event

10000 1110 40 50

b) an example of mutti - event

Figure 1. A multi-event

conservative,

Multi-events will be discussed, in detail, which are

contained in a single message. A message is an object which
transfers information between gates, The information carried

by the message represents a set of events as follows,

Definition 1. A multi-event contains a sequence of events

to be propagated.

A multi-event contains a sequence of timestamps in non-
decreasing order to propagate the results of the whole event
evaluation within an advancement window. A multi-event has
the form as shown in Figure 1(a). In the figure, s represents
the timestamp of the first event of a multi-event, and v
indicates the signal value of the first event, In addition, d;
contains the timestamp difference between the first event and
the (¢ -+ 1)-th event in the multi-event, and corresponding
signaly; follows, In event-driven simulation, only events
whose output signal is different from the output signal of
the previous event evaluation must be propagated.

Depending on what parallel machine is used, the format
of a multi-event may vary. For example, if the computation
of the difference in timestamps takes too much time, the
timestamp itself is sent instead of the difference, The signal
fields(v o7 v;)may not be necessary in a multi-event if binary
signals, either 0 or 1, are used and we can make sure that
the signal value of the last event in the most recently sent
multi-event is different from the value of the first event in
the multi-event to be sent,

Time Warp has an antimessage used to nullify previous
incorrect event propagation. In this case, the message contains
only a timestamp as its information.

For example, suppose binary signals are used and that there
are propagation events ¢(10000,1),e(10010,0),¢(10020,0),
¢(10040,1), and ¢{10050,0). The message to be sent will
contain the multi-event shown in Figure 1(b). In traditional
distributed event-driven simulation, at least 6 simulation
cycles and 4 send operations for the above evaluation and
propagation are required. With the proposed advancement
windows and multi-events, however, all the above evaluations
may be performed and their results will be propagated to

successors during the same simulation cycle,
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2. Clock Advancement Windows

In this section, the concepts of clock advancement windows
in conservative simulation and optimistic simulation are
discussed, Since the advancement window techniques are
implemented on a massively parallel SIMD (Single [nstruction
Multiple Data Stream) machine, terminology needed for

implementation on the machine will also be introduced.

Definition 2. Event cvaluation at simulation time ¢ is
defined to be safe only if it is certain that no event with
timestamp less than ¢ can arrive in the future, Otherwise,

event evaluation is called unsafe.
2.1 Advanced Conservative Logic Simulation

Link clocks and minimum link clocks are used. That is, a
link clock input port of a process is defined to be the
timestamp of the most recently arrived event along the input
link, The minimum link clock of a process is the minimum
of link clocks of all its input ports,

Based on the concept of safety, we define the following

advancement window in conservative simulation,

Definition 3, In conservative simulation, a window at a
gate can be defined from LVT(=!) to minimum link clocks
(=c) where !=c. Such a window, which contains the events
to be involved in safe event evaluation, is called a Maximum

Conservative Advancement Window (MCAW),

On MIMD (Multiple Instructions Multiple Data Stream)
machines, all (or some) events within the maximum
conservative advancement window can be executed for a
simulation iteration (or cycle), All gates are synchronized in
SIMD processing environments. Hence, all gates must wait
until the slowest {or busiest) gate finishes its event
evaluations, To avoid that situation, we limit the number of

event evaluations.

Definition 4. A Synchronized Conservative Advancement

Window (SCAW) is defined as the synchronized window
which contains only events to be involved in safe event
evaluation, The size of the window is defined as the number

of event evaluations from LVT,

Definition 5, 1f advancement windows are applied in logic
simulation, each simulation cycle has a repeated procedure
which consists of LVT computation, choosing active gates,
and event evaluation, This procedure is called an advancement
cyele, Only one event evaluation is allowed in an advancement

cycle,

A simulation cycle has one or more advancement cycles.
For example, Figure 2.(a) shows the state of a gate during
simulation. The minimum link clock of the gate is 60, All
events from LVT 10 to the minimum link clock can be
involved in safe event evaluation, as shown in figure 2.(b).
In this case, an event evaluation means that an output value
is computed based on all the events with the same timestamp.
For example, the event evaluation at 10 in Figure 2.(b)
involves two events stored in queues QL and Q2, respectively.
All the events in the MCAW can be conservatively evaluated
without violating cvent processing precedence, In  other
words, the MCAW consists of a sequence of safe event
evaluations. In the figure, since SCAW size 3 is used, the
maximum number of LVT computation and event evaluations
at a simulation cycle is three.

Fach gate might have a different MCAW at a certain
simulation cycle, as shown in Figure 3, Gates 1, 2, and 3
have MCAW of sizes 5, 2, and 4, respectively, We assumed
that SCAW size is 4. A gate whose MCAW is not smaller
than a SCAW, as shown in gates 1 and 3 of the figure,
performs event evaluation at cach advancement cycle of the
simulation cycle, as shown in gate 3 of the figure, Otherwise,
the gate may be idle after the first few advancement cycles,
It is very important to choose an appropriate SCAW size for
good performance, The performance will be analyzed
according to the size in section 3. In advanced conservative
logic simulation with advancement windows, the following

steps are performed at each gate for each simulation cycle,
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[Algorithm ADVANCED CONSERVATIVE]

1. The minimum link clock is computed.
2. The following advancement cycle is repeated as many

times as the predetermined advancement window size,

Simulation time

Minimum link clock () 70

4 _'I !MCAW
SCAW|

o 1

O indicates unsafe event evaliation
o indicates safe svent evaluation

(a) A gate with two input ports (b) SCAW with 3 evaluaion as its size

Figure 2. An example of an advancement window

SCAW

LVTs e
Gate numbers

s )

O indicates unsafe event evaluation
o indicates safe event evakuation

Figure 3. Relationship between MCAWs and a SCAW

(a) LVT is computed.
{b) if LVT is less than or equal to the minimum link
clock, event evaluation is performed.
3. Event propagation is performed.
4. Each link clock is set to the last timestamp in the multi-
event received on the link.

5. Queue manipulation is performed if necessary,

In addition. we can use a global clock to choose active
gates for better performance if the above algorithm is
implemented on SIMD machines, as given in [6]. For the
above algorithm, a multi-event may also carry a virtual time
which is the delay of the gate plus the last LVT, This value
is useful in setting the link clocks of successors, Conservative
simulation with advancement windows can be applied to the
null message strategy as well as the deadlock detection and
recovery strategy. It is known that conservative simulation
with deadlock detection and recovery is very efficient on
MIMD machines [4,13]. while the simulation with null
messages works cfficiently on massively parallel SIMD
machines [6]. The techniques proposed in this section can

be applied effectively in both cases,
2.2 Advanced Optimistic Logic Simulation

In traditional optimistic simulation such as Time Warp,
only one LVT increment is allowed at each simulation cycle,
In the proposed approach, each gate can advance its LVT
one ot more times based on a ptedetermined advancement

window size, We define a term for the window.

Definition 6. A Synchronized Aggressive Advancement
Window (SAAW) is defined as the synchronized window
which contains some events from LVT for each gate as far
as there are available events to be executed, The size of the

window is defined as the number of event evaluations,

If a MIMD machine is used as a target machine, a
predetermined advancement window, which need not be
synchronized, is applied to each gate duting simulation. Event
evaluation in optimistic simulation is allowed even when
ordering could be violated. In the proposed technique, event
evaluation is performed for all events within a SAAW even
if rollback may occur later, In advanced optimistic logic
simulation with advancement windows, the following steps

are performed at each gate for each simulation cycle.
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[Algorithm ADVANCED OPTIMISTIC]

1. The following advancement cycle is tepeated as many
times as the predetermined advancement window size.
(a) LVT is computed.

(b) For the first advancement cycle only, rollback is

performed if the LVT is less than or equal to the

o

R

previous LVT.

———

LVTs
Gate numbers N
1 2 3

O indicates unsafe event evaluation

Figure 4. An example of SCAW with size 2

(c) Event evaluation is performed.

2. Multi-event propagation is performed,

3. Queue manipulation and fossil collection are performed,
if necessary.

Since the timestamps of events within a simulation cycle
nevet decrease, only the first advancement of a simulation of
a simulation cycle at a gate can cause rollback, Figure 4
shows a simulation example with SAAW size 2. That is, all
events within the window are involved in event evaluation
at the same simulation cycle, Gates 1 and 2 are busy during
the simulation cycle, while gate 3 is idle after one advancement
cycle,

When the proposed approach is used, there are some
advantages in queuc manipulation. All events along the same
link will be inserted near cach other in the same queue. A

disadvantage is that rollback frequency increases,
3. Performance Evaluation

Both consetvative and optimistic logic simulation with

advancement windows are implemented on the CM-2 with
32K processors, Both simulation protocols were implemented
based on the same data structures proposed in [5]. As test
input, 1,000 randomly generated input vectors were used, In
our simulation, we use the number of event evaluations as
an advancement window size,

Ler us discuss the performance metrics for the proposed
techniques. The performance of the proposed simulation
technique will be evaluated by means of the comparison to
traditional distributed event-driven simulation techniques. We

define the following performance metrics for the evaluation,

Simulation Cycle Ratio((,), which is the ratio of the

C
number of simulation cycles at window size w to the
number of simulation cycles at window size 1. That is,
simulation at window size 1 indicates the traditional

distributed simulation techniques,

Maximum Queue Ratio (), which is the ratio of the
maximum queue size at window size % to the maximum

queue size at window size 1,

There are two ways of defining parallelism based on
how to define an active gate, When an active gate is
defined as a gate which performs event evaluation at
least once during a simulaton cvcle, parallelism is

computed as

where T; is the total number of simulation cycles for which
gate ¢ is active, N is the number of gates, and S is the
number of simulation cycles.

Parallelism Ratio(P,.) is defined as the ratio of parallelism at
window size w to parallelism at window size 1.

If we define an active gate as a gate which performs event
evaluation at an advancement cycle, adjusted parallelism at

a certain window size is computed as

where T, is the total number of advancement cycles for



20 EZAIEa|0lM &3 TEX| HBH, H2E, 1994.12

which gate ¢ is active and W is the synchronized advancement
window size, When the window size is equal to 1, parallelism
is the same as adjusted parallelism, The average number of
clock advancements (or event evaluation) at window size w
for a simulation cycle can be computed by multiplication of
adjusted parallelism and the window size,

- Execution Time Ratio (Eu) which is the ration of the
execution time at window size @ to execution time at
window size 1.

* Rollback Frequency Ratio (R,), which is the ration of
the rollback frequency at window size w to rollback
frequency at window size 1 in optimistic logic simulation.

In terms of the ratios proposed above, we compare the

petformance of traditional event-driven simulation and
proposed simulation techniques with advancement windows,
The maximum number of event evaluations is used as a unit
which determines advancement window size. In addition, there
are several other ways to define the unit as follows.

- the maximum number of additional fields in a multi-
event or

* the maximum number of events to be processed.

3.1 Advanced Conservative Logic Simulation with SCA
w

The petformance of advanced conservative logic simulation
with different SCAW sizes is evaluated in terms of simulation
cycle ratio, maximum queue size ratio, parallelism ratio, and
execution time ratio, Figure 5 shows the performance
comparison with traditional simulation for C1908, and C7552
with 1,000 randomly generated input vectors as a function
of SCAW size, The performance in the figure was obtained
based on the performance of traditional conservative logic
simulation which evaluates gates once per simulation cycle.

As a measurement of how much local simulation clocks
advance, the number of required simulation cycle is used. As
the amount of clock advancement increases, the number of
simulation cycles decreases, since local simulation clock move
ahead quickly, As shown in Figure 5.(a), as the SCAW size

increases, the number of simulation cycles decreases rapidly

and then converges to a certain point,

In Figure 5.(b), as the SCAW size increases, the maximum
queue size decreases initially, but then increases. We can
explain this as follows, Events in gates are propetly processed
and consumed as the SCAW size approaches a certain value
in the circuit. In this case, the required maximum queue size
would become small, But, as the SCAW size increases bevond
this value, some gates may have large actually processed
advancement windows, while other gates might have small
windows, Therefore, some input ports might have a lot of
events while other input ports have a small number of events,
There might be big differences between link clocks at a gate,
Hence, there is a high possibility of having large maximum
queue sizes.

In Figure 5.(c), the parallelism increases initially, but then
decreases, We can explain this as follows. In the case of a
large SCAW size, gates close to primary input ports process
many events at each simulation cycle since the gates in general
have large SCAW, while gates near primary output evaluate
a relatively small number of events due to their small MCAW,
That is, if a large SCAW is used, gates in the front part of
the circuit complete simulation early, but gates in the rear
part may have congestion problems. Therefore, as SCAW size
increases bevond a certain point, parallelism might decrease,

In Figure 5.(d), the execution times decrease initially, then
increase. The best performance is given when the SCAW size
is 4. As the SCAW size increases, the time taken for a
simulation cycle becomes longer since we need as many LVT
computations and event evaluations as the SCAW size at each
simulation cycle, Therefore, the best performance is given at
the point where the time spent for a simulation cycle is not
long, as well as the number of simulation cycles is not large,

Figure 6 shows the performance with respect to adjusted
parallelism, and average number of advancements per
simulation cycle. According to the graphs, as SCAW size
increases. The average number of advancements increases, and
converges to a certain value since there are no more useful
advancement cycles if SCAW size cxceeds MCAW sizes of
all the gates in the circuit being simulated.

Figure 7 shows the performance of advanced conservative
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Figure 5. Conservative simulation with different SCAW

sizes (1)

logic simulation as a function of the number of input vectors.
SCAW size 4 is used since the best performance was given
at the SCAW size, As the number of input vectors increases,
the number of simulation cycles, the maximum queue size,

parallelism, and execution times also increase,

3.2 Advanced Optimistic Logic Simulation with SAA
w

Figure 8 shows the performance for C1908, and C7552 as

a function of SAAW size, In our simulaton, the maximum
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Figure 6. Conservative simulation with different SCAW

sizes (2)

number of event cvaluations was fixed in advance as a
synchronized aggressive advancement window. The perfor-
mance comparison with traditional optimistic simulation was
measured in terms of ratios for number of simulation cycles,
parallelism, rollback frequency, and execution times,

As the SAAW size increases, the number of simulation
cycles decreases and converges to a certain point, as shown
in Figure 8.(2). The number cannot decrease further because
rollback requires some number of additional simulation cycles
even though clock advancements are enhanced by giving a
larger window size,

In Figure 8.(b), as SAAW increases, rollback frequency
rapidly increases, But, it decreases as the SAAW increases
beyond a certain size. The reason is as follows, For a large
SAAW, many events are processed in a simulation cycle, even
though only the first advancement cycle of each simulation
cycle may have rollback and the number of simulation cycles
also decreases, At any rate, optimistc simulation with
advancement windows has much higher rollback frequency
than traditional optimistic simulation,

As shown in Figure 8.(c), parallelism increases, since more
events arc involved in event cvaluation at each simulation
cycle as SAAW size increases, But parallelism decreases finally,
since the number of active gates will become smaller for a

large SAAW. With a large window size, the gate is more
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Figure 7. Conservative logic simulation with SCAW=4

likely to consume its entire queues, and therefore be idle on
the next cycle. For example, in the worst case, if the SAAW
size is equal to the number of input vectors, parallelism will
be extremely small.

In Figure 8.(d), the execution time of optimistic simulation
with the proposed technique decreases initially for the
following reasons. First, the number of simulation cycles
decreases and only one rollback manipulation is required in
a simulation cycle even though SAAW size increases, Second,
queue manipulations are fast on circular binary search event
queucs, Finally, rollback manipulation is very simple, therefore
high rollback frequency does not affect the execution time

that much. But the execution time finally increases as the
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Figure 8. Advanced optimistic simulation with different
SAAW(1)

SAAW size increases, since the number simulation cycle
converges to a certain point and each simulation cycle has
more advancement cycles,

Figure 9 shows the performance measured in adjusted

pet

simulation cycle with 1,000 randomly generated input vectors,

parallelism, and average number of advancements
Adjusted parallelism increases until SAAW size reaches 10,
but the adjusted parallelism decreases since the number of
idle advancement cycles increases beyond that window size.
The average number of advancements per simulation cycle

increases.
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3.3 Communication Costs According to Message
Length

The performance of logic simulation using advancement
windows will be different depending on the architecture of
the parallel machine used for the simulation, Simulation with
the windows can be done more efficiently in MIMD than
SIMD environments. In SIMD machines, the longest time
among aill gates for event cvaluations and multi-event
propagation dominates a simulation cvcle time, since all
processors are synchronized, In MIMD machines, however,
each processor can petform event evaluation and propagate
multi-events at its own pace without affecting other
processors.

The big advantage of using multi-events is to reduce the
communication costs by grouping multiple events into a
multi-event. In parallel processing environments, each message
between processors contains some additional information, such
as packet header and rail.

Figure 10 shows the communication cost increase ratio on
several parallel machines as message lengths increase, where
the cost increases ratio 15 defined as the ratio of communica-
tion time for a 4n byte message to communication time for
a 4 byte message {156,107, In the figure, scparate sending

means that a single event is sent in a message, as in traditional

10
T
bvciinig
° 4
[ 20 40 60 0 100

Numbet of bits

Figure 10. Communication costs according to message

lengths

distributed event-driven simulation, In this case, communica-
tion cost is exactly obtained by muldplying the number of
events sent and time per event. In the figure, the CM-2 and
the MP-1 are massively parallel SIMD machines and the
others are MIMD machines,

We can achieve good performance in logic simulation with
advancement windows on MIMD machines for the following
reasons. First, according to Figure 10, communication costs
on modern parallel machines such as the NCUBE-Z can be
significantly saved by sending long message rarely, rather than
sending short messages frequently, Morteover, in SIMD
processing environments, there might be many idle processes
which have smaller advancement windows than the predeter-
mined maximum advancement window due to synchronization
of all processors, In contrast, in MIMD processing environ-
ments, there might not be many idle processes for smaller

advancement windows.
4. Conclusions

We have proposed new efficient logic simulation approaches
with advancement windows to enhance local clock advance-
ment for fast simulation in parallel processing environments.
According to experimental results for some combinational
benchmark circuits on the CM-2, both conservative and
optimistic logic simulation protocols with advancement
windows and multi-events require fewer simulation cycles and
achieve higher parallelism than traditional conservative and

optimistic simulation protocols. In addition, execution times
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also are smaller for some window sizes. Simulation with
advancement windows is very promising when there are many
input vectors, because average events per cycle will be almost
at the maximum during steady state,

The good performance would be enhanced even more in
MIMD environments than the SIMD environment of the
CM-2. The technique can be applied to improve the
performance of other simulation schemes, such as YADDES
(11].

We can use the proposed technique to enhance local clock
advancements, while a global moving time window can be
simultaneously applied to prevent queue overflow, That is,
advancement windows make local clocks go ahead as fast as
possible, but any local clock too far beyond a global clock
is not allowed to advance to prevent queue overflow,

As future studies, we aim to implement conservative and
optimistic simulation approaches with advancement windows
and multi-events on MIMD machines and to compare with
the performance obtained on a SIMD machine, ln addition,
we are going to continue research on how we can efficiently
use advancement windows and multi-events for circuits with

feedback loops.
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