• Title/Summary/Keyword: simple sequence repeat marker

Search Result 90, Processing Time 0.036 seconds

Use of Simple Sequence Repeat (SSR) Markers for Variety Identification of Tomato (Lycopersicon esculentum) (Simple Sequence Repeat (SSR) Marker를 이용한 토마토 품종 식별)

  • Kwon, Yong-Sham;Park, Eun-Kyung;Bae, Kyung-Mi;Yi, Seung-In;Park, Soon-Gi;Cho, Il-Ho
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.289-295
    • /
    • 2006
  • This study was carried out to evaluate the suitability of simple sequence repeat (SSR) markers for varietal identification and genetic diversity in 28 commercial tomato varieties. The relationship between marker genotypes and 28 varieties was analyzed. Of the 219 pairs of SSR primers screened against ten tomato varieties, 18 pairs were highly polymorphic with polymorphism information content (PIC) ranging from 0.467 to 0.800. Among the polymorphic loci, two to nine SSR alleles were detected for each locus with an average of 3.3 alleles per locus. Genetic distances were estimated according to Jaccard's methods based on the probability that the amplified fragment from one genotype would be present in another genotype. These varieties were categorized into cherry and classic fruit groups corresponding to varietal types and genetic distance of cluster ranging from 0.35 to 0.97. The phonogram discriminated all varieties by marker genotypes. The SSR markers proved to be useful variety identification and genetic resource analysis of tomato.

Identification of Rice Variety Using Simple Sequence Repeat (SSR) Marker (Simple sequence repeat (SSR) marker를 이용한 벼 품종 식별)

  • Kwon, Yong-Sham;Park, Eun-Kyung;Park, Chan-Ung;Bae, Kyung-Mi;Yi, Seung-In;Cho, Il-Ho
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.1001-1005
    • /
    • 2006
  • The objective of this study was carried out to evaluate the suitability of simple sequence repeat (SSR) markers for genetic diversity assessment and identification of rice varieties. The 23 primers selected from 50 SSR primers showed polymorphisms in the 21 rice varieties. The 2 to 9 SSR alleles were detected for each locus with an average of 3.00 alleles per locus. The polymorphism information content (PIC) ranged form 0.091 to 0.839. Based on band patterns, UPGMA cluster analysis was conducted. These varieties were separate into 4 groups corresponding to rice ecotype and pedigree information and genetic distance of cluster ranging from 0.59 to 0.92. The 4 SSR primer sets (RM206, RM225, RM418, RM478) selected form 23 polymorphic primers were differentiated all the rice variety from each other by markers genotypes. These markers may be used wide range of practical application in variety identification of rice.

Development of Variation Marker of Myzus persicae by Altitude (고도에 따른 지역별 복숭아혹진딧물 집단 변이 마커 개발)

  • Kim, Ju-Il;Kwon, Min
    • Korean journal of applied entomology
    • /
    • v.50 no.4
    • /
    • pp.325-333
    • /
    • 2011
  • This study focused on the green peach aphid, Myzus persicae, as an indicator pest in Chinese cabbage cultivation to develop a genetic marker. We hypothesized that M. persicae gene flow is related to climate change. Genetic variation was analyzed using five local populations collected at different altitudes (157 m, 296 m, 560 m, 756 m and 932 m above sea level) in Hoengseong, Pyeongchang, and Gangneung areas, plus a laboratory strain used as an outgroup. There were no differences in ecological characteristics among strains. Esterase isozyme pattern and inter-simple sequence repeat (ISSR) PCR results showed significantly different bands between laboratory and wild, local populations. However, there was no difference among local populations. Partial fragments of ribosomal RNA (rRNA) and mitochondrial cytochrome oxidase I (mtCO I) were amplified and their nucleotide sequence was analyzed. Single nucleotide polymorphisms (SNPs) were detected in internal transcribed spacer-2 (ITS-2) and mtCO I regions among the five local populations. These SNPs can be use to discriminate different populations of M. persicae to monitor gene flow.

Evaluation of QTL Related SSR Marker Universality in Korean Rice Breeding Populations

  • Song, Moon-Tae;Lee, Jeom-Ho;Lee, Sang-Bok;Ku, Ja-Hwan;Cho, Youn-Sang;Song, Myung-Hee;Park, Sung-Ho;Hwang, Hung-Goo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.1
    • /
    • pp.56-64
    • /
    • 2003
  • If a quantitative trait loci (QTL) marker identified in a population is applicable to different populations (marker universality), this will not only reduce the labor and cost in marker assisted selection (MAS), but accelerate the application of molecular markers to real breeding programs. Present study aims to evaluate the defined QTL related markers from a population to a different breeding population for the MAS. Four rice breeding populations were subjected to seventy-five simple sequence repeat (SSR) markers which were already identified for their polymorphism information content (PIC) in the parents of the crossings. Among them, eight markers were evaluated for their correlation between presence of marker alleles and phenotypic expression in breeding populations. A reasonable level of polymorphism for the mapped markers originated from any sources of rice accessions was observed between crosses of any sources (marker repeatability). However, correlation between presence of markers and expression of the traits in rice breeding populations was not significant except for minor portion of traits and markers examined (failure of marker universality). In the present study, various strategies were discussed to develop new markers with universality of breeding application.

Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis

  • Vijayan Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.10 no.2
    • /
    • pp.79-86
    • /
    • 2005
  • Molecular markers have increasingly been used in plant genetic analysis, due to their obvious advantages over conventional phenotypic markers, as they are highly polymorphic, more in number, stable across different developmental stages, neutral to selection and least influenced by environmental factors. Among the PCR based marker techniques, ISSR is one of the simplest and widely used techniques, which involves amplification of DNA segment present at an amplifiable distance in between two identical microsatellite repeat regions oriented in opposite direction. Though ISSR markers are dominant like RAPD, they are more stable and reproducible. Because of these properties ISSR markers have recently been found using extensively for finger printing, pohylogenetic analysis, population structure analysis, varietal/line identification, genetic mapping, marker-assisted selection, etc. In mulberry (Morus spp.), ISSR markers were used for analyzing phylogenetic relationship among cultivated varieties, between tropical and temperate mulberry, for solving the vexed problem of identifying taxonomic positions of genotypes, for identifying markers associated with leaf yield attributing characters. As ISSR markers are one of the cheapest and easiest marker systems with high efficiency in generating polymorphism among closely related varieties, they would play a major role in mulberry genome analysis in the future.

Assessment of Genetic Relationship among Watermelon Varieties Revealed by ISSR Marker (Inter-simple sequence repeat (ISSR) marker를 이용한 수박의 품종간 유연관계 분석)

  • Kwon Yong-Sham;Lee Won-Sik;Cho Il-Ho
    • Journal of Life Science
    • /
    • v.16 no.2 s.75
    • /
    • pp.219-224
    • /
    • 2006
  • Inter-simple sequence repeat (ISSR) analysis were used to assess genetic diversity among 18 genotypes of watermelon (Citrullus lanatus Thunb.) including breeding lines and commercial varieties. The 21 ISSR primers selected from 100 primers were showed the amplification of 105 reproducible fragments ranging from about 200 bp to 5000 bp. A total of 58 DNA fragments were polymorphic with an average 2.7 polymorphic bands per primer. The polymorphic primers were divided into 18 anchored primers and 3 non anchored primers. All of the anchored primers were di-nucleotide repeat motif, and was more polymorphic than non anchored primers. Eighteen watermelon genotypes were classified into two large groups. Clustering was in some accordance with the division of fruit shape into 18 watermelon. Therefore, ISSR markers may be suitable for variety discrimination and for constructing a linkage map of watermelon.

Applied Computational Tools for Crop Genome Research

  • Love Christopher G;Batley Jacqueline;Edwards David
    • Journal of Plant Biotechnology
    • /
    • v.5 no.4
    • /
    • pp.193-195
    • /
    • 2003
  • A major goal of agricultural biotechnology is the discovery of genes or genetic loci which are associated with characteristics beneficial to crop production. This knowledge of genetic loci may then be applied to improve crop breeding. Agriculturally important genes may also benefit crop production through transgenic technologies. Recent years have seen an application of high throughput technologies to agricultural biotechnology leading to the production of large amounts of genomic data. The challenge today is the effective structuring of this data to permit researchers to search, filter and importantly, make robust associations within a wide variety of datasets. At the Plant Biotechnology Centre, Primary Industries Research Victoria in Melbourne, Australia, we have developed a series of tools and computational pipelines to assist in the processing and structuring of genomic data to aid its application to agricultural biotechnology resear-ch. These tools include a sequence database, ASTRA, for the processing and annotation of expressed sequence tag data. Tools have also been developed for the discovery of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) molecular markers from large sequence datasets. Application of these tools to Brassica research has assisted in the production of genetic and comparative physical maps as well as candidate gene discovery for a range of agronomically important traits.

SSR-Primer Generator: A Tool for Finding Simple Sequence Repeats and Designing SSR-Primers

  • Hong, Chang-Pyo;Choi, Su-Ryun;Lim, Yong-Pyo
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.189-193
    • /
    • 2011
  • Simple sequence repeats (SSRs) are ubiquitous short tandem duplications found within eukaryotic genomes. Their length variability and abundance throughout the genome has led them to be widely used as molecular markers for crop-breeding programs, facilitating the use of marker-assisted selection as well as estimation of genetic population structure. Here, we report a software application, "SSR-Primer Generator " for SSR discovery, SSR-primer design, and homology-based search of in silico amplicons from a DNA sequence dataset. On submission of multiple FASTA-format DNA sequences, those analyses are batch processed in a Java runtime environment (JRE) platform, in a pipeline, and the resulting data are visualized in HTML tabular format. This application will be a useful tool for reducing the time and costs associated with the development and application of SSR markers.

DNA Polymorphism and Assessments of Genetic Relationships in genus Zoysia Based on Simple Sequence Repeat Markers (ISSR에 의한 잔디속 식물의 DNA 다형성과 유전적 관계 평가)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.257-262
    • /
    • 2015
  • The genetic variability of four species of the genus Zoysia collected from South Korea was analyzed using an inter-simple sequence repeat (ISSR) marker system. Polymerase chain reactions (PCR) with eight ISSR primers generated 86 amplicons, 76 (87.1%) of which were polymorphisms. The polymorphism information content (PIC) value of the ISSR marker system was 0.848. The percentage of polymorphic loci (Pp) ranged from 41.2% to 44.7%. Nei’s gene diversity (H) ranged from 0.149 to 0.186, with an average overall value of 0.170. The mean of Shannon’s information index (I) value was 0.250. Total genetic diversity values (HT) varied between 0.356 (ISSR-1) and 0.418 (ISSR-16), for an average overall polymorphic loci of 0.345. Interlocus variation in within-species genetic diversity (HS) was low (0.170). On a per-locus basis, the proportion of total genetic variation due to differences among species (GST) was 0.601. This indicated that about 60.1% of the total variation was among species. Thus, about 39.9 of genetic variation was within species. The estimate of gene flow, based on GST, was very low among species of the genus Zoysia (Nm = 0.332). The phylogenic tree showed three distinct groups: Z. macrostachya and Z. tenuifolia clades and other species were formed the separated clusters. In conclusion, the ISSR assay was useful for detecting genetic variation in the genus Zoysia, and its discriminatory power was comparable to that of other genotyping tools.

Simple sequence repeat marker development from Codonopsis lanceolata and genetic relation analysis

  • Kim, Serim;Jeong, Ji Hee;Chung, Hee;Kim, Ji Hyeon;Gil, Jinsu;Yoo, Jemin;Um, Yurry;Kim, Ok Tae;Kim, Tae Dong;Kim, Yong-Yul;Lee, Dong Hoon;Kim, Ho Bang;Lee, Yi
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.181-188
    • /
    • 2016
  • In this study, we developed 15 novel polymorphic simple sequence repeat (SSR) markers by SSR-enriched genomic library construction from Codonopsis lanceolata. We obtained a total of 226 non-redundant contig sequences from the assembly process and designed primer sets. These markers were applied to 53 accessions representing the cultivated C. lanceolata in South Korea. Fifteen markers were sufficiently polymorphic, and were used to analyze the genetic relationships between the cultivated C. lanceolata. One hundred three alleles of the 15 SSR markers ranged from 3 to 19 alleles at each locus, with an average of 6.87. By cluster analysis, we detected clear genetic differences in most of the accessions, with genetic distance varying from 0.73 to 0.93. Phylogenic analysis indicated that the accessions that were collected from the same area were distributed evenly in the phylogenetic tree. These results indicate that there is no correlative genetic relationship between geographic areas. These markers will be useful in differentiating C. lanceolata genetic resources and in selecting suitable lines for a systemic breeding program.