Browse > Article
http://dx.doi.org/10.5352/JLS.2006.16.2.219

Assessment of Genetic Relationship among Watermelon Varieties Revealed by ISSR Marker  

Kwon Yong-Sham (Variety Testing Division, National Seed Management Office, MAF)
Lee Won-Sik (Seobu Branch Office National Seed Management Office MAF)
Cho Il-Ho (Variety Testing Division, National Seed Management Office, MAF)
Publication Information
Journal of Life Science / v.16, no.2, 2006 , pp. 219-224 More about this Journal
Abstract
Inter-simple sequence repeat (ISSR) analysis were used to assess genetic diversity among 18 genotypes of watermelon (Citrullus lanatus Thunb.) including breeding lines and commercial varieties. The 21 ISSR primers selected from 100 primers were showed the amplification of 105 reproducible fragments ranging from about 200 bp to 5000 bp. A total of 58 DNA fragments were polymorphic with an average 2.7 polymorphic bands per primer. The polymorphic primers were divided into 18 anchored primers and 3 non anchored primers. All of the anchored primers were di-nucleotide repeat motif, and was more polymorphic than non anchored primers. Eighteen watermelon genotypes were classified into two large groups. Clustering was in some accordance with the division of fruit shape into 18 watermelon. Therefore, ISSR markers may be suitable for variety discrimination and for constructing a linkage map of watermelon.
Keywords
Watermelon; genetic relationship; ISSR; cluster analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hu, J., M. Nakatani, A. Garcia, T. Kuranouchi and T. Fujimura. 2003. Genetic analysis of sweetpotato and wild relative using Inter-simple sequence repeats (ISSRs). Breeding Science 53, 297-304   DOI   ScienceOn
2 Prevost, A. and M. J. Wilkinson. 1999. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivar. Theor. Appl. Genet. 98, 107-112   DOI
3 Sneath, P. H. A. and R. R. Sokal. 1973. Numerical taxonomy : The Principles and Practice of Numerical Classification, W. H. Freeman, San Francisco
4 Kim, D. H., G. Zur, Y. Danin-Poleg, S. W. Lee, K. B. Shim, C. W. Kang and Y. Kashi. 2002. Genetic relationships of sesame germplasm collection as revealed by inter- simple sequence repeats. Plant Breeding 121, 259-262   DOI   ScienceOn
5 Lee, S. J., J. S. Shin, K. W. Park and Y. P. Hong. 1996. Detection of genetic diversity using RAPD-PCR and sugar analysis in watermelon [Citrullus lanatus (Thunb.) Mansf.] germplasm. Theor. Appl. Genet. 92, 719-725   DOI   ScienceOn
6 Bates, D. M. and R. Robinson. 1995. Cucumber, melons, and watermelon : Cucumis and Citrullus (Cucurbitaceae). pp. 89-96, In Smartt, J. and N. W. Simmonds (eds.), Evolution of Crop Plants. Longman, London
7 Blair, M. W., O. Panaud and S. R. McCouch. 1999. Inter-simple sequence repeat (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor. Appl. Genet. 98, 780-792   DOI
8 Che, K. P., C. Y. Liang, Y. G. Wang, D. M. Jin and B. Wang. 2003. Genetic assessment of watermelon germplasm using the AFLP technique. HortScience 38, 81-84
9 Fang, D. Q. and M. L. Roose. 1997. Identification of closely related citrus cultivars with inter-simple sequence repeat markers. Theor. Appl. Genet. 95, 408-417   DOI
10 Paris, H. S., N. Yonash, V. Portnoy, N. Mozes-Daube, G. Tzuri and N. Katzir. 2003. Assessment of genetic relationships in Cucurbita pepo (Cucurbitaceae) using DNA markers. Theor. Appl. Genet. 106, 971-978   DOI
11 Rohlf, F. J. 2000, NTSYSpc. Numerical Taxonomy and Multivariate Analysis System- Version 2.10b. Applied Biostatistics Inc., New York
12 Staub, J. E. and F. C. Serquen. 1996. Genetic markers, map construction, and their application in plant breeding. HortScience 31, 729-741
13 Jarret, R. L., L. C. Merrick, T. Holms, J. Evans and M. K. Aradhya. 1996. Simple sequence repeats in watermelon [(Citrullus lanatus (Thunb) Matsum. & Nakai]. Genome 40, 433-441
14 Nagaoka, T. and Y. Ogihara. 1997. Applicability of inter- simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theor. Appl. Genet. 94, 597-602   DOI