Browse > Article
http://dx.doi.org/10.5352/JLS.2015.25.3.257

DNA Polymorphism and Assessments of Genetic Relationships in genus Zoysia Based on Simple Sequence Repeat Markers  

Huh, Man Kyu (Department of Molecular Biology, Dong-eui University)
Publication Information
Journal of Life Science / v.25, no.3, 2015 , pp. 257-262 More about this Journal
Abstract
The genetic variability of four species of the genus Zoysia collected from South Korea was analyzed using an inter-simple sequence repeat (ISSR) marker system. Polymerase chain reactions (PCR) with eight ISSR primers generated 86 amplicons, 76 (87.1%) of which were polymorphisms. The polymorphism information content (PIC) value of the ISSR marker system was 0.848. The percentage of polymorphic loci (Pp) ranged from 41.2% to 44.7%. Nei’s gene diversity (H) ranged from 0.149 to 0.186, with an average overall value of 0.170. The mean of Shannon’s information index (I) value was 0.250. Total genetic diversity values (HT) varied between 0.356 (ISSR-1) and 0.418 (ISSR-16), for an average overall polymorphic loci of 0.345. Interlocus variation in within-species genetic diversity (HS) was low (0.170). On a per-locus basis, the proportion of total genetic variation due to differences among species (GST) was 0.601. This indicated that about 60.1% of the total variation was among species. Thus, about 39.9 of genetic variation was within species. The estimate of gene flow, based on GST, was very low among species of the genus Zoysia (Nm = 0.332). The phylogenic tree showed three distinct groups: Z. macrostachya and Z. tenuifolia clades and other species were formed the separated clusters. In conclusion, the ISSR assay was useful for detecting genetic variation in the genus Zoysia, and its discriminatory power was comparable to that of other genotyping tools.
Keywords
Genetic variability; genus Zoysia; polymorphism information content (PIC); phylogenic tree; simple sequence repeat markers (ISSR);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nei, M. and Li, W. H. 1979. Mathematical model for studying genetical variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 74, 5267-5273.
2 Paul, S. P., Wachira, F. N., Powell, W. and Waugh, R. 1997. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor. Appl. Genet. 94, 255-263.   DOI
3 Shete, S., Tiwari, H. and Elston, R. C. 2000. On estimating the heterozygosity and polymorphism information content value. Theor. Pop. Biol. 57, 265-271.   DOI
4 Slatkin, M. 1985. Rare alleles as indicators of gene flow. Evolution 39, 53-65.   DOI
5 Hu, J. and Vick, B. A. 2003. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol. Biol. Rep. 21, 289-294.   DOI
6 Stewart, A. 2005. The potential for domestication and seed propagation of native New Zealand grasses for turf, pp. 277-284. In: Royal New Zealand Institute of Horticulture Conference 2003: Greening the City-Bringing Biodiversity Back into the Urban Environment. October 21-24., Christchurch, New Zealand.
7 Hamrick, J. L. and Godt, M. J. W. 1989. Allozyme diversity in plant species, pp. 304-319. In: Brown, A. H. D., Clegg, M. T., Kahler, A. L. and Weir, B. S. (eds.), Plant Population Genetics, Breeding and Genetic Resources. Sinauer Sunderland, MA.
8 Hamrick, J. L., Godt, M. J. W. and Sherman-Broyles, S. L. 1992. Factors influencing levels of genetic diversity in woody plant species. New For. 6, 95-124.   DOI
9 Jin, H. and Han, L. B. 2004. Progress on genetic diversity of Zoysia japonica Steud. J. Bejing. For. Uni. 26, 91-95.
10 Ledig, F. T. 1986. Heterozygosity, heterosis, and fitness in outbreeding plants, pp. 77-104. In: Soule, M. E. (ed.), Conservation Biology. Sinauer Sunderland, MA.
11 Le Thierry d’Enneequin, M., Poupance, B. and Starr, A. 2000. Assessment of genetic relationships between Setaria italica and its wild relative S. viridis using AFLP markers. Theor. Appl. Genet. 100, 1061-1066.   DOI
12 Li, Y. and Tong, H. Y. 2004. Genetic differentiation in Zoysia sinica populations revealed by RAPD markers. Guihaia 24, 345-349.
13 Loch, D. S., Simon, B. K. and Poulter, R. E. 2005. Taxonomy, distribution, and ecology of Zoysia macrantha Desv., an Australian native species with turf breeding potential. Int. Turfgrass Soc. Res. J. 10, 593-599.
14 Choi, J. S., Ahn, B. J. and Yang, G. M. 1997b. Distribution of native zoysiagrasses (Zoysia spp.) in the south and west coastal regions of Korea and classification using morphological characteristics. J. Kor. Soc. Hort. Sci. 38, 399-407.
15 Loveless, M. D. and Hamrick, J. L. 1984. Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15, 65-95.   DOI
16 Bowman, K. D., Hutcheson, K., Odum, E. P. and Shenton, L. R. 1971. Comments on the distribution of indices of diversity. Stat. Ecol. 3, 315-359.
17 Choi, J. S., Ahn, B. J. and Yang, G. M. 1997a. Classification of zoysiagrasses (Zoysia spp.) native to the southwest coastal regions of Korea using RAPDs. J. Kor. Soc. Hort. Sci. 38, 789-795.
18 Anderson, S. J. 2000. Taxonomy of Zoysia (Poaceae): Morphological and molecular variation. Ph.D. dissertation, Texas A&M Univ., Texas, USA.
19 Collard, B. C. Y. and Mackill, D. J. 2009. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol. Biol. Rep. 27, 86-93.   DOI
20 Bayer, R. J. 1990. Patterns of clonal diversity in the Antennaria rosea (Asteraceae) polyploid agamic complex. Am. J. Bot. 77, 1313-1319.   DOI
21 Engelke, M. and Anderson, S. 2003. Zoysiagrasses (Zoysia spp.), pp. 271-286. In: M. D. Casler and Cuncan, R. R. (eds.), Turfgrass Biology, Genetics, and Breeding. John Wiley & Sons, Hoboken, NJ.
22 Forbes, I. Jr. 1952. Chromosome numbers and hybrids in Zoysia. Agron. J. 44, 194-199.   DOI
23 Glemin, S., Bazin, E. and Charlesworth, D. 2006. Impact of mating systems on patterns of sequence polymorphism in flowering plants. Proc. Biol. Sci. 273, 3011-3019.   DOI
24 Yeh, F. C., Yang, R. C. and Boyle, T. 1999. POPGENE Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis. University of Alberta, Alberta.
25 Weng, J. H., Fan, M. J., Lin, C. Y., Liu, Y. H. and Huang, S. Y. 2007. Genetic variation of Zoysia as revealed by random amplified polymorphic DNA (RAPD) and isozyme pattern. Plant. Prod. Sci. 10, 80-85.   DOI
26 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739.   DOI
27 Vijayan, K. 2005. Inter simple sequence repeat (ISSR) Ppolymorphism and its application in mulberry genome analysis. Int. J. Indust. Entomol. 10, 79-86.
28 Xie, Y., Liu, L., Fu, J. and Li, H. 2012. Genetic diversity in Chinese natural zoysiagrass based on inter-simple sequence repeat (ISSR) analysis. Afr. J. Biotechol. 11, 7659-7669.
29 Yaneshita, M., Kaneko, S. and Sasakuma, T. 1999. Allotetraploidy of Zoysia species with 2n=40 based on a RFLP genetic map. Theor. Appl. Genet. 98, 751-756.   DOI
30 Zietkiewicz, E., Rafalski, A. and Labuda, D. 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176-183.   DOI
31 Lubberstedt, T., Melchinger, A. E., Duble, C., Vuylsteke, M. and Kuiper, M. 2000. Relationships among early Europe maize inbreds: IV. Genetic diversity revealed with AFLP markers and comparison with RFLP, RAPD, and pedigree data. Crop Sci. 40, 783-791.   DOI
32 McDermott, J. M. and McDonald, B. A. 1993. Gene flow in plant pathosystems. Ann. Rev. Phytopathy 31, 353-373.   DOI
33 Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 73, 3321-3323.
34 Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann. Human Genet. 41, 225-233.   DOI