• Title/Summary/Keyword: simple ideal

Search Result 347, Processing Time 0.027 seconds

SIMPLE VALUATION IDEALS OF ORDER 3 IN TWO-DIMENSIONAL REGULAR LOCAL RINGS

  • Noh, Sun-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.511-528
    • /
    • 2008
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and $\upsilon$ be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple $\upsilon$-ideals $m\;=\;P_0\;{\supset}\;P_1\;{\supset}\;{\cdots}\;{\supset}\;P_t\;=\;P$ and all the other $\upsilon$-ideals are uniquely factored into a product of those simple ones [17]. Lipman further showed that the predecessor of the smallest simple $\upsilon$-ideal P is either simple or the product of two simple $\upsilon$-ideals. The simple integrally closed ideal P is said to be free for the former and satellite for the later. In this paper we describe the sequence of simple $\upsilon$-ideals when P is satellite of order 3 in terms of the invariant $b_{\upsilon}\;=\;|\upsilon(x)\;-\;\upsilon(y)|$, where $\upsilon$ is the prime divisor associated to P and m = (x, y). Denote $b_{\upsilon}$ by b and let b = 3k + 1 for k = 0, 1, 2. Let $n_i$ be the number of nonmaximal simple $\upsilon$-ideals of order i for i = 1, 2, 3. We show that the numbers $n_{\upsilon}$ = ($n_1$, $n_2$, $n_3$) = (${\lceil}\frac{b+1}{3}{\rceil}$, 1, 1) and that the rank of P is ${\lceil}\frac{b+7}{3}{\rceil}$ = k + 3. We then describe all the $\upsilon$-ideals from m to P as products of those simple $\upsilon$-ideals. In particular, we find the conductor ideal and the $\upsilon$-predecessor of the given ideal P in cases of b = 1, 2 and for b = 3k + 1, 3k + 2, 3k for $k\;{\geq}\;1$. We also find the value semigroup $\upsilon(R)$ of a satellite simple valuation ideal P of order 3 in terms of $b_{\upsilon}$.

SIMPLE VALUATION IDEALS OF ORDER TWO IN 2-DIMENSIONAL REGULAR LOCAL RINGS

  • Hong, Joo-Youn;Lee, Hei-Sook;Noh, Sun-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.427-436
    • /
    • 2005
  • Let (R, m) be a 2-dimensional regular local ring with algebraically closed residue field R/m. Let K be the quotient field of R and v be a prime divisor of R, i.e., a valuation of K which is birationally dominating R and residually transcendental over R. Zariski showed that there are finitely many simple v-ideals $m=P_0\;{\supset}\;P_1\;{\supset}\;{\cdotS}\;{\supset}\;P_t=P$ and all the other v-ideals are uniquely factored into a product of those simple ones. It then was also shown by Lipman that the predecessor of the smallest simple v-ideal P is either simple (P is free) or the product of two simple v-ideals (P is satellite), that the sequence of v-ideals between the maximal ideal and the smallest simple v-ideal P is saturated, and that the v-value of the maximal ideal is the m-adic order of P. Let m = (x, y) and denote the v-value difference |v(x) - v(y)| by $n_v$. In this paper, if the m-adic order of P is 2, we show that $O(P_i)\;=\;1\;for\;1\;{\leq}\;i\; {\leq}\;{\lceil}\;{\frac{b+1}{2}}{\rceil}\;and\;O(P_i)\;=2\;for\;{\lceil}\;\frac{b+3}{2}\rceil\;{\leq}\;i\;\leq\;t,\;where\;b=n_v$. We also show that $n_w\;=\;n_v$ when w is the prime divisor associated to a simple v-ideal $Q\;{\supset}\;P$ of order 2 and that w(R) = v(R) as well.

ON SIMPLE LEFT, RIGHT AND TWO-SIDED IDEALS OF AN ORDERED SEMIGROUP HAVING A KERNEL

  • Changphas, Thawhat
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.1217-1227
    • /
    • 2014
  • The intersection of all two-sided ideals of an ordered semigroup, if it is non-empty, is called the kernel of the ordered semigroup. A left ideal L of an ordered semigroup ($S,{\cdot},{\leq}$) having a kernel I is said to be simple if I is properly contained in L and for any left ideal L' of ($S,{\cdot},{\leq}$), I is properly contained in L' and L' is contained in L imply L' = L. The notions of simple right and two-sided ideals are defined similarly. In this paper, the author characterize when an ordered semigroup having a kernel is the class sum of its simple left, right and two-sided ideals. Further, the structure of simple two-sided ideals will be discussed.

Free vibration analysis of axially moving beam under non-ideal conditions

  • Bagdatli, Suleyman M.;Uslu, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.597-605
    • /
    • 2015
  • In this study, linear vibrations of an axially moving beam under non-ideal support conditions have been investigated. The main difference of this study from the other studies; the non-ideal clamped support allow minimal rotations and non-ideal simple support carry moment in minimal orders. Axially moving Euler-Bernoulli beam has simple and clamped support conditions that are discussed as combination of ideal and non-ideal boundary with weighting factor (k). Equations of the motion and boundary conditions have been obtained using Hamilton's Principle. Method of Multiple Scales, a perturbation technique, has been employed for solving the linear equations of motion. Linear equations of motion are solved and effects of different parameters on natural frequencies are investigated.

A NOTE ON Z-IDEALS IN BCI-SEMIGROUPS

  • Ahn, Sun-Shin;Kim, Hee-Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.895-902
    • /
    • 1996
  • In this paper, we describe the ideal generated by non-empty stable set in a BCI-group as a simple form, and obtain an equivalent condition of prime Z-ideal.

  • PDF

CONSTRUCTION OF QUOTIENT BCI(BCK)-ALGEBRA VIA A FUZZY IDEAL

  • Liu, Yong-Lin;Jie Meng
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.51-62
    • /
    • 2002
  • The present paper gives a new construction of a quotient BCI(BCK)-algebra X/${\mu}$ by a fuzzy ideal ${\mu}$ in X and establishes the Fuzzy Homomorphism Fundamental Theorem. We show that if ${\mu}$ is a fuzzy ideal (closed fuzzy ideal) of X, then X/${\mu}$ is a commutative (resp. positive implicative, implicative) BCK(BCI)-algebra if and only if It is a fuzzy commutative (resp. positive implicative, implicative) ideal of X Moreover we prove that a fuzzy ideal of a BCI-algebra is closed if and only if it is a fuzzy subalgebra of X We show that if the period of every element in a BCI-algebra X is finite, then any fuzzy ideal of X is closed. Especiatly, in a well (resp. finite, associative, quasi-associative, simple) BCI-algebra, any fuzzy ideal must be closed.

ON THE LEFT REGULAR po-Γ-SEMIGROUPS

  • Kwon, Young In;Lee, Sang Keun
    • Korean Journal of Mathematics
    • /
    • v.6 no.2
    • /
    • pp.149-154
    • /
    • 1998
  • We consider the ordered ${\Gamma}$-semigroups in which $x{\gamma}x(x{\in}M,{\gamma}{\in}{\Gamma})$ are left elements. We show that this $po-{\Gamma}$-semigroup is left regular if and only if M is a union of left simple sub-${\Gamma}$-semigroups of M.

  • PDF

Interval-valued Fuzzy Ideals and Bi-ideals of a Semigroup

  • Cheong, Min-Seok;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.259-266
    • /
    • 2011
  • We apply the concept of interval-valued fuzzy sets to theory of semigroups. We give some properties of interval-valued fuzzy ideals and interval-valued fuzzy bi-ideals, and characterize which is left [right] simple, left [right] duo and a semilattice of left [right] simple semigroups or another type of semigroups in terms of interval-valued fuzzy ideals and intervalvalued fuzzy bi-ideals.