A NOTE ON I-IDEALS IN BCI-SEMIGROUPS

SUN SHIN AHN AND HEE SIK KIM*

ABSTRACT. In this paper, we describe the ideal generated by non-empty stable set in a BCI-group as a simple form, and obtain an equivalent condition of prime \mathcal{I} -ideal.

1. Introduction

The notion of BCK-algebras was proposed by Y. Imai and K. Iséki in 1966. In the same year, K. Iséki ([3]) introduced the notion of BCI-algebra which is a generalization of a BCK-algebra. The ideal theory plays an important role in studying BCK-algebras and BCIalgebras, and some interesting results have been obtained by several authors ([1,2,9]). In particular, the study of prime ideals is also an important part of the theory of BCK-algebras ([1]). In 1993, Y.B. Jun and et. al. ([6]) introduced the notion of BCI-semigroups/monoid, and studied their properties. They also considered the concept of \mathcal{I} -ideals and of zero-divisors in BCI-semigroups. Some authors ([7, 8]) studied BCI-semigroups with the notion of fuzzy (commutative) \mathcal{I} -ideals. Every p-semisimple BCI-algebra gives naturally an abelian group by defining x + y := x * (0 * y), and hence p-semisimple BCI-semigroup leads to the ring structure. On the while, every ring gives a BCI-algebra by defining x * y := x - y and hence we can construct a BCI-semigroup. Hence the BCI-semigroup is a generalization of the ring. In this paper, we describe the ideal generated by a non-empty stable set in a BCI-group as a simple form, and obtain an equivalent condition of a prime \mathcal{I} -ideal. Let us recall definitions and some propertites.

Received March 18, 1996. Revised July 26, 1996.

¹⁹⁹¹ AMS Subject Classification: 06F35, 06A06.

Key words and phrases: BCI-semigroup(group), (prime) \mathcal{I} -ideal, stable.

^{*} This paper was supported (in part) by BSRI program, MOE, 1995, Project No. BSRI-95-1423.

DEFINITION 1.1 ([6]). A BCI-semigroup is a non-empty set X with two binary operations "*" and "·" and constant 0 satisfying the following axioms:

- (1) (X; *, 0) is a BCI-algebra,
- (2) (X, \cdot) is a semigroup,
- (3) the operation "·" is distributive (on both sides) over the operation "*", that is, $x \cdot (y * z) = (x \cdot y) * (x \cdot z)$ and $(x * y) \cdot z = (x \cdot z) * (y \cdot z)$ for all $x, y, z \in X$.

EXAMPLE 1.2. Define two binary operations "*" and "." on a set $X := \{0, 1, 2, 3\}$ as follows:

*	0	1	2	3		0	1	2	3
0	0	0	2	2	0 1 2 3	0	0	0	0
1	1	0	3	2	1	0	1	0	1
2	2	2	0	0	2	0	0	2	2
3	3	2	1	0	3	0 0	1	2	3

Then, by routine calculations, we can see that $(X; *, \cdot, 0)$ is a BCI-semigroup.

EXAMPLE 1.3. Define two binary operations "*" and "." on a set $X := \{0, a, b, c\}$ as follows:

*	0	a	b	<i>b</i>	•	0	α	b	b
0	0	0	c	d	0	0	0	0	0
a	a	0	c	d	0	0	0	0	0
b	b	b	0	c	b	0	0	b	c
c	c	c	\boldsymbol{b}	o	c	0	()	c	b

Then it is easy to see that $(X; *, \cdot, 0)$ is a BCI-semigroup.

If a BCI-semigroup X contains an element 1_X such that $1_X \cdot x = x \cdot 1_X = x$ for all $x \in X$, then X is called a BCI-monoid, and we call 1_X the multiplicative identity. If every non-zero element of a BCI-monoid X has a multiplicative inverse, then X is called a BCI-group. In what

follows, for convenience, we shall write the multiplication $x \cdot y$ by xy. We give some examples of a BCI-semigroup which is a generalization of the ring.

EXAMPLE 1.4. Let Q be the set of all rational numbers. Then (Q, -, 0) is a BCI-algebra which is not a BCK-algebra, since $0 - x \neq 0$ for any non-zero x in Q. It is easily verified that $Q = (Q, -, \cdot, 0, 1)$ is a BCI-group, where " \cdot " is the ordinary multiplication on Q.

Proposition 1.5 ([6]). Let X be a BCI-semigroup. Then

- (i) 0x = x0 = 0,
- (ii) $x \leq y$ implies that $xz \leq yz$ and $zx \leq zy$, for all $x, y, z \in X$.

DEFINITION 1.6 ([6]). A non-empty subset A of a BCI-semigroup X is called a left(right) \mathcal{I} -ideal of X if

- (i) A is an ideal of a BCI-algebra X,
- (ii) $x \in X$ and $a \in A$ imply that $xa \in A$ ($ax \in A$). Both left and right \mathcal{I} -ideal is called two-sided \mathcal{I} -ideal or simply \mathcal{I} -ideal.

2. Main Results

In this section, we describe the ideal generated by a non-empty stable set in a BCI-group as a simple form, and obtain an equivalent condition of a prime \mathcal{I} -ideal.

THEOREM 2.1 ([6]). Let $\{A_i\}$ be a collection of \mathcal{I} -ideals of the BCI-semigroup X, where i ranges over some index set. Then $\cap A_i$ is also an \mathcal{I} -ideal of X.

DEFINITION 2.2. Let $(X : *, \cdot, 0)$ be a BCI-semigroup and let A be a subset of X. Then the intersection of all \mathcal{I} -ideals of X containing A is said to be the *ideal generated by* A.

Notice that this definition is well-defined sinces there is always at least one ideal containing A, i.e., X itself. For convenience the ideal generated by A will be denoted by A > 0. We follow the convention: A < 0 > 0, and $A < \{a_1, \dots, a_n\} > 0 > 0 < 0$, and $A < \{a_1, \dots, a_n\} > 0 < 0 < 0$, and ideal A < 0 < 0 < 0, and ideal A > 0 < 0 is generated by a single element is called a principal A > 0-ideal. A principal A > 0-ideal is principal A > 0-ideal.

DEFINITION 2.3. A non-empty subset A of a semigroup (X, \cdot) is called left (right) stable if for any $x \in X$ and any $a \in A$, $x \cdot a \in A$ ($a \cdot x \in A$). Both left and right stable is two-sided stable or simply stable.

EXAMPLE 2.4. In the Example 1.2, the set $\{0,1\}$ is stable, while $\{0,3\}$ is not stable.

THEOREM 2.5. Let X be a BCI-group and commutative with respect the operation " · " and A be a non-empty stable subset of X. Then

$$< A >= \{x \in X | \exists a_1, \dots, a_n \in A \text{ and } \exists r_1, \dots, r_n \in X - \{0\} \text{ such that } r_n(\dots(r_2(r_1(x * a_1) * a_2) * \dots) * a_n) = 0\}$$
 (*)

PROOF. Denote the right of (*) by B. Clearly $0 \in B$. Let $x * y \in B$ and $y \in B$. Then there exist $a_1, \dots, a_n, b_1, \dots, b_m \in A$ and $r_1, \dots, r_n, s_1, \dots, s_m \in X - \{0\} (n \ge m)$ such that

$$r_n(\cdots(r_2(r_1((x*y)*a_1)*a_2)*\cdots)*a_n) = 0,$$

$$s_m(\cdots(s_2(s_1(y*b_1)*b_2)*\cdots)*b_m) = 0.$$

By the Proposition 1.5-(i), we may assume that $n \ge m$. So $r_n(\cdots (r_2(r_1(x*a_1)*a_2)*\cdots)*a_n)*r_n\cdots r_1y=0$, and hence

$$r_n(\cdots(r_2(r_1(x*a_1)*a_2)*\cdots)*a_n) \leq r_n\cdots r_1y.$$

Leftly " \cdot "-multiplying both sides of the above inequality by s_1 , we have

$$s_1(r_n(\cdots(r_2(r_1(x*a_1)*a_2)*\cdots)*a_n)) \le s_1r_n\cdots r_1y = r_n\cdots r_1s_1y.$$

Rightly "*"-multiplying both sides of the above inequality by $s_1 r_n \cdots r_1$ b_1 , by Proposition 1.5-(ii), we have

$$s_1(r_n(\cdots(r_2(r_1(x*a_1)*a_2)*\cdots)*a_n))*s_1r_n\cdots r_1b_1$$

$$\leq r_n\cdots r_1(s_1(y*b_1))$$

and hence

$$s_1(r_n(\cdots(r_2(r_1(x*a_1)*a_2)*\cdots)*a_n)*r_n\cdots r_1b_1) \leq r_n\cdots r_1(s_1(y*b_1)).$$

Leftly "·"-multiplying both sides of the above inequality by s_2 , we have

$$s_2(s_1(r_n(\cdots(r_2(r_1(x*a_1)*a_2)*\cdots)*a_n)*r_n\cdots r_1b_1))$$

$$\leq s_2(r_n\cdots r_1(s_1(y*b_1))).$$

Rightly "*"-multiplying both sides of the above inequality by $s_2r_n\cdots r_1$ b_2 , we have

$$s_2(s_1(r_n(\cdots(r_2(r_1(x*a_1)*a_2)*\cdots)*a_n)*r_n\cdots r_1b_1)$$

$$*r_n\cdots r_1b_2) \leq r_n\cdots r_1(s_2(s_1(y*b_1)*b_2)).$$

Repeating the above argument m-times we obtain

$$s_{m}(\cdots(s_{1}(r_{n}(\cdots(r_{2}(r_{1}(x*a_{1})*a_{2})*\cdots)*a_{n})*r_{n}\cdots r_{1}b_{1})*\cdots)$$

$$*r_{n}\cdots r_{1}b_{m}) \leq r_{n}\cdots r_{1}(s_{m}(\cdots(s_{2}(s_{1}(y*b_{1})*b_{2})*\cdots)*b_{m})) = 0.$$

 $(32(31(9 + 01) + 02) + \cdots) + 0m)) = 0$

Consequently,

$$\begin{split} s_m(\cdots(s_1(r_n(\cdots(r_2(r_1(x*a_1)*a_2)*\cdots)\\ *a_n)*r_n\cdots r_1b_1)*\cdots)*r_n\cdots r_1b_m) = 0. \end{split}$$

This implies $x \in B$.

For any $k \in X$ and $x \in B$, there exist $a_1, \dots, a_n \in A$ and $r_1, \dots, r_n \in X$ such that

$$r_n(\cdots(r_2(r_1(x*a_1)*a_2)*\cdots)*a_n)=0.$$

Since A is stable, for any $k \in X$, $ka_i \in A$ (and $a_ik \in A$). So

$$r_n(\cdots(r_2(r_1(kx*ka_1)*ka_2)*\cdots)*ka_n)$$

$$= k(r_n(\cdots(r_2(r_1(x*a_1)*a_2)*\cdots)*a_n))$$

$$= k \cdot 0$$

$$= 0.$$

Hence $kx \in B$ (and $xk \in B$). Summarizing the above facts B is an \mathcal{I} -ideal of a BCI-semigroup X. Obviously, $A \subseteq B$.

Let I be any \mathcal{I} -ideal containing A. In order to prove $B \subseteq I$, we assume that $x \in B$. Then there are $a_1, \dots, a_n \in A$ and $r_1, \dots, r_n \in X$ such that

$$r_n(\cdots(r_2(r_1(x*a_1)*a_2)*\cdots)*a_n)=0.$$

Since $0 \in I$, we have

$$r_n(\cdots(r_2(r_1(x*a_1)*a_2)*\cdots)*a_n) \in I$$
,

SO

$$r_n r_{n-1} (\cdots (r_2 (r_1 (x*a_1)*a_2)*\cdots)*a_{n-1})*r_n a_n \in I.$$

Since I is an \mathcal{I} -ideal and $r_n a_n \in I$, it follows that

$$r_n r_{n-1} (\cdots (r_2 (r_1 (x*a_1)*a_2)*\cdots)*a_{n-1}) \in I.$$

Repeating this argument n times we obtain

$$r_n \cdots r_1 x \in I$$
.

Since X is a BCI-group, we obtain $x \in I$. Hence $B \subseteq I$ and $B = \langle A \rangle$, proving the theorem. \square

DEFINITION 2.6. An \mathcal{I} -ideal $P \neq X$ in a BCI-semigroup X is said to be *prime* if it has the following property: If A and B are \mathcal{I} -ideals in X such that $AB \subseteq P$, then $A \subseteq P$ or $B \subseteq P$.

EXAMPLE 2.7. In Example 1.2, the set $\{0,1\}$ is prime \mathcal{I} -ideal of the BCI-semigroup X.

THEOREM 2.8. If P is an I-ideal of a BCI-semigroup X such that $P \neq X$ and for all $a, b \in X$

$$ab \in P \Rightarrow a \in P \quad \text{or} \quad b \in P$$
 (**)

then P is prime. Conversely, if (X; *, 0) is an associative BCI-algebra, (X, \cdot) is a commutative semigroup and the operation "·" is distributive on both side over the operation "*", then any prime \mathcal{I} -ideal P satisfies the condition (**).

PROOF. If A and B are \mathcal{I} -ideals such that $AB \subseteq P$ and $A \nsubseteq P$, then there exists an element $a \in A - P$. Since $ab \in AB \subseteq P$ for any $b \in B$, we have $b \in P$ by applying the condition (**). Hence $B \subseteq P$. This means P is a prime \mathcal{I} -ideal of X.

Conversely, let P be a \mathcal{I} -ideal of X and $ab \in P$. Then $\langle ab \rangle \subseteq P$. We claim that $\langle a \rangle \langle b \rangle \subseteq \langle ab \rangle$. Let $x \in \langle a \rangle$ and $y \in \langle b \rangle$. Then by Theorem 2.5 there are $r, s \in X - \{0\}$ such that r(x * a) = 0 and s(y * b) = 0. Hence

$$rs(xy*ab) = rs(xy*ab)*(sb*ra0)$$

$$= rs(xy*ab)*(sb*r(x*a)*ra*\cdot s(y*b))$$

$$= rs(xy*ab)*rs(b(x*a)*a(y*b))$$

$$= rs((xy*ab)*((bx*a)*a(y*b)))$$

$$= rs((xy*ab)*((bx*(ay*ab))*ba))$$

$$= rs((xy*ab)*((bx*ay)*ab)*ba))$$

$$= rs((xy*ab)*((bx*ay)*(ab*ba)))$$

$$= rs((xy*ab)*(bx*ay))$$

$$= rs((xy*ab)*(bx*ay))$$

$$= rs((xy*ab)*rs(xb*ay)$$

$$= ((rxsy*rasb)*rsxb)*rasy$$

$$= ((rxsy*rasb)*rasy)*rxsb$$

$$= ((rxsy*rasb)*rasy)*rxsb$$

$$= ((rxsy*rasy)*rasb)*rxsb$$

$$= (rxsy*(rasy*rasb))*rxsb$$

$$= (rxsy*rasy)*rasb)*rxsb$$

$$= (rx*y*rasy)*rasb)*rxsb$$

$$= (rx*y*rasy)*rxsb$$

$$= (rx*y*rasy)*rxsb$$

$$= (rx*y*rasy)*rxsb$$

$$= (rx*y*rasy)*rxsb$$

This means that $xy \in \langle ab \rangle$. Hence $\langle a \rangle \langle b \rangle \subseteq \langle ab \rangle \subseteq P$. Since P is prime, $\langle a \rangle \subseteq P$ or $\langle b \rangle \subseteq P$, whence $a \in P$ or $b \in P$. \square

ACKNOWLEDGEMENTS. The authors express their thanks to the referee for his/her valuable suggestions.

References

- J. Ahsan, E. Y. Deeba and A. B. Thaheem, On prime ideals of BCK-algebrs, Math. Japonica 36 (1991), 875-882.
- Z. Chen and H. Wang, On simple BCI-algebras, Math. Japonica 36 (1991), 627-632.
- K. Iséki, An algebra related with a propositional calculus, Proc. Japan. Acad. 42 (1966), 351-366.
- 4. K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japonica 23 (1978), 1-26.
- 5. S. S. Ahn and H. S. Kim, On isomorphism theorems in BCI-semigroups, J. Chung cheong Math. Soc. 9 (1996), 1-9.
- Y. B. Jun, S. M. Hong and E. H. Roh, BCI-semigroups, Honam. Math. J. 15 (1993), 59-64.
- 7. Y. B. Jun, Y. H. Kim, J. Y. Kim and H. S. Kim, Fuzzy commutative *I-ideals in BCI-semigroups*, submitted.
- 8. Y. B. Jun, S. S. Ahn, J. Y. Kim and H. S. Kim, Fuzzy I-ideals in BCI-semigroups, submitted.
- C. Z. Mu and W. H. Xiong, On ideals in BCK-algebras, Math. Japonica 36 (1991), 497-501.

Sun Shin Ahn
Dept. of Mathematics Education
Dongguk University
Seoul 100-715, Korea.

Hee Sik Kim
Dept. of Mathematics Education
Chungbuk National University
Chongju 361-763, Korea
heekim@cbucc.chungbuk.ac.kr