• Title/Summary/Keyword: silicon content

Search Result 358, Processing Time 0.025 seconds

Effects of Si and Mo on the Temperature-Dependent Properties of High Si High Mo Ductile Cast Irons (고규소 고몰리브덴 구상흑연주철의 온도 의존 특성에 미치는 규소와 몰리브덴의 영향)

  • Choe, Kyeong-Hwan;Lee, Sang-Mok;Kim, Myung-Ho;Yun, Sang-Weon;Lee, Kyong-Whoan
    • Journal of Korea Foundry Society
    • /
    • v.29 no.6
    • /
    • pp.257-264
    • /
    • 2009
  • The effects of silicon and molybdenum on the temperature-dependent properties of high silicon and high molybdenum ductile cast iron were investigated. Microstructure was composed of ferrite, cell boundary complex carbide, carbide precipitated in the grain and graphite. The number and size of carbide decreased with the increase of silicon content and increased with the increase of molybdenum content, however, the size of cell boundary carbide increased above 0.81wt%Mo. The room temperature tensile strength increased with the increase of silicon and molybdenum contents. That did not increase with the latter with more than 0.8wt%. Meanwhile the high temperature tensile strength showed the similar trend to that of room temperature one, that of the specimen with 0.55wt%Mo was the highest. The $A_1$ transformation temperature increased with the silicon and molybdenum contents, and showed similar tendency with the variation of strength. It was discussed due to the solubility limit of Molybdenum in ferrite, of which value was assumed to be in the vicinity of 0.81wt%Mo. The weight after oxidation at 1,173K showed the result caused by the difference in solubility of molybdenum in the matrix. That and the thickness change after oxidation did not show any consistent trend with the silicon and molybdenum contents.

The effect of carbon content on hot cracking of low carbon steel weld (저탄소성 용접금속의 응고균열에 미치는 탄소함량의 영향)

  • ;;Masumoto, I.
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.16-26
    • /
    • 1988
  • The effect of carbon content on hot cracking of welded carbon steel was investigated Eight steel plates whose carbon content range from 0.02 to 0.23 percent were welded by autogeous gas tungsten are process. Constant strain was applied to the hot crack test specimen under the strain rate of 0.15 mm per second during welding. The hot cracking susceptibility ws high in the rnage of 0.02-0.05 and 0.12-0.23 percent carbon contents. The critical carbon content immune to hot cracking is in the range from 0.07 to 0.12 percent carbon. By electron probe microanalyser, amanganese segregation was not seen significantly in the whole carbon range. But segregation of silicon was higher in the region of low carbon contents. However, sulphur was segregated remarkably in the region betwen 0.18 and 0.23 percent carbon by peritectic reaction. Very smal lamount of dnedritic structure was observed in the region from 0.02 to 0.05 percent carbon by peritectic reaction. Very small amount of dendritic structure was observed in the region from 0.02 to 0.05 percent carbon but the predominant solidification structure was smooth by cellular growth. The higher the carbon content is, the more the columnar dendritic structure was observed.

  • PDF

Effect of Si on Spatter Generation and Droplet Transfer Phenomena of MAG Wwlding (MAG 용접의 스패터 발생 및 용적이행현상에 미치는 Si의 영향)

  • 안영호;이종봉;엄동석
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.36-43
    • /
    • 1999
  • The effect of Si content in welding wires on spattering characteristics and droplet transfer phenomena was studied. In MAG welding using 80% Ar-20% $CO_2$ shielding gas, spattering characteristics and droplet transfer phenomena were varied with Si content of wire. With increasing Si content, the spattering ratio and the ratio of large size spatter $(d\geq1.0mm)$ were increased. The increase of Si content in molten metal made surface tension increase due to reduction of oxygen content, which resulted from deoxidizing action of silicon. The increase of surface tension resulted in unstable transfer phenomena and arc instability in both short circuit and spray region. With changing Si content of wire, spattering characteristics and droplet transfer phenomena was directly influenced by the variation of surface tension, compared with the effect of arc stability.

  • PDF

A Study on Effect of Heat Treatment on Electrochemical Characteristics of Silicon-coated Graphite (실리콘이 코팅된 흑연의 열처리 효과에 따른 전기화학적 특성에 대한 연구)

  • Lee Myungro;Byun Dongjin;Jeon Bub Ju;Lee Joong Kee
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.66-72
    • /
    • 2005
  • Surface modification of the silicon-coated graphite was carried out at $200^{\circ}C\~800^{\circ}C$ under hydrogen atmosphere. The silicon-coated graphites were prepared by fluidized-bed spray coating method. The components of silicon films prepared on the graphite consist of SiO, $SiO_x\;(1. The components of silicon films at $200^{\circ}C$ of heat treatment brought on the higher fraction of SiO and $SiO_x$ than that of $SiO_2$. However, inactive $SiO_2$ fraction increases with increase of the heat treatment temperature. The high content of SiO and $SiO_x$ in the silicon film on graphite leads to the higher discharge capacity in our experimental range.

Characterization of Hydrogel Tinted Contact Lens Containing 4-iodoaniline using Titanium Silicon Oxide Nanoparticles as Additive (티타늄 실리콘 옥사이드 나노입자를 첨가제로 사용한 4-iodoaniline을 포함한 하이드로젤 착색 콘택트렌즈의 특성)

  • Cho, Seon-Ahr;Sung, A-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.3
    • /
    • pp.315-322
    • /
    • 2014
  • Purpose: The physical and optical characteristics of hydrophilic tinted contact lens containing titanium silicon oxide nanoparticles and the basic hydrogel contact lens material containing 4-iodoaniline were examined. In this study, the utility of titanium silicon oxide nanoparticles as a UV-blocking material for ophthalmologic devices were investigated by measuring the UV transmittance of the produced polymer. Also, titanium silicon oxide nanoparticles only without the addition of 4-iodoaniline in primary contact lens materials by copolymerizing two groups were compared. Methods: For manufacturing hydrogel lens, HEMA, MA, MMA, 4-iodoaniline and a cross-linker EGDMA were copolymerized in the presence of AIBN as an initiator. Also, the titanium silicon oxide nanoparticles was used as additive. After polymerization the physical properties such as water content, refractive index, contact angle and spectral transmittance of produced contact lenses were measured. Results: Measurement of the physical properties of the copolymerized material showed that the water content, refractive index, UV-B transmittance and contact angle were in the range of 35.01~38.60%, 1.4350~1.4418, $34.15{\sim}57.25^{\circ}$ and 1.0~10.0%, respectively. Titanium silicon oxide nanoparticles is not used as an additive in the experimental group, the results of the measurement showed that the water content, refractive index, contan angle and UV-B transmittance of the hydrogel lens polymer was 34.00~36.80%, 1.4378~1.4420, $40.15{\sim}60.16^{\circ}$ and 1.8~25.0%, respectively. Conclusions: Also, the transmittance for UV light was reduced significantly in combinations containing titanium oxide nanoparticles.

Influences of Target-to-Substrate Distance and Deposition Temperature on a-SiOx/Indium Doped Tin Oxide Substrate as a Liquid Crystal Alignment Layer (RF 마그네트론 스퍼터링에서 증착거리와 증착온도가 무기 액정 배향막의 물리적 성질에 미치는 영향에 대한 연구)

  • Park, Jeung-Hun;Son, Phil-Kook;Kim, Ki-Pom;Pak, Hyuk-Kyu
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.521-528
    • /
    • 2008
  • We present the structural, optical, and electrical properties of amorphous silicon suboxide (a-$SiO_x$) films grown on indium tin oxide glass substrates with a radio frequency magnetron technique from a polycrystalline silicon oxide target using ambient Ar. For different substrate-target distances (d = 8 cm and 10 cm), the deposition temperature effects were systematically studied. For d = 8cm, oxygen content in a-$SiO_x$ decreased with dissociation of oxygen onto the silicon oxide matrix; temperature increased due to enlargement of kinetic energy. For d = 10 cm, however, the oxygen content had a minimum between $150^{\circ}\;and\;200^{\circ}$. Using simple optical measurements, we can predict a preferred orientation of liquid crystal molecules on a-$SiO_x$ thin film. At higher oxygen content (x > 1.6), liquid crystal molecules on an inorganic liquid crystal alignment layer of a-$SiO_x$ showed homogeneous alignment; however, in the lower case (x < 1.6), liquid crystals showed homeotropic alignment.

Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries (리튬이온배터리 Graphite/Silicon/Carbon 복합 음극소재의 전기화학적 성능)

  • Jo, Yoon Ji;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.320-326
    • /
    • 2018
  • In this study, Graphite/Silicon/Carbon (G/Si/C) composites were synthesized to improve the electrochemical properties of Graphite as an anode material of lithium ion battery. The prepared G/Si/C composites were analyzed by XRD, TGA and SEM. Also the electrochemical performances of G/Si/C composites as the anode were performed by constant current charge/discharge, rate performance, cyclic voltammetry and impedance tests in the electrolyte of $LiPF_6$ dissolved inorganic solvents (EC:DMC:EMC=1:1:1 vol%). Lithium ion battery using G/Si/C electrode showed better characteristics than graphite electrode. It was confirmed that as the silicon content increased, the capacity increased but the capacity retention ratio decreased. Also, it was shown that both the capacity and the rate performances were improved when using the Silicon (${\leq}25{\mu}m$). It is found that in the case of 10 wt% of Silicon (${\leq}25{\mu}m$), G/Si/C composites have the initial discharge capacity of 495 mAh/g, the capacity retention ratio of 89% and the retention rate capability of 80% in 2 C/0.1 C.

Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety

  • Abed-Ashtiani, Farnaz;Kadir, Jugah-Bin;Selamat, Ahmad-Bin;Hanif, Ahmad Husni Bin-Mohd;Nasehi, Abbas
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.164-171
    • /
    • 2012
  • Rice blast disease caused by Magnaporthe grisea (Hebert) Barr [teleomorph] is one of the most devastating diseases in rice plantation areas. Silicon is considered as a useful element for a large variety of plants. Rice variety MR219 was grown in the glasshouse to investigate the function of silicon in conferring resistance against blast. Silica gel was applied to soil while sodium silicate was used as foliar spray at the rates of 0, 60, 120, 180 g/5 kg soil and 0, 1, 2, 3 ml/l respectively. The treatments were arranged in a completely randomized design. Disease severity and silicon content of leaves were compared between the non-amended controls and rice plants receiving the different rates and sources of silicon. Silicon at all rates of application significantly (${\alpha}$ = 0.05) reduced the severity of disease with highest reduction (75%) recorded in treatments receiving 120 g of silica gel. SEM/EDX observations demonstrated a significant difference in weight concentration of silicon in silica cells on the leaf epidermis between silicon treated (25.79%) and non treated plants (7.87%) indicating that Si-fertilization resulted in higher deposition of Si in silica cells in comparison with non-treated plants. Application of silicon also led to a significant increase in Si contents of leaves. Contrast procedures indicated higher efficiency of silica gel in comparison to sodium silicate in almost all parameters assessed. The results suggest that mitigated levels of disease were associated with silicification and fortification of leaf epidermal cells through silicon fertilization.

Scanning Tunneling Microscopy (STM)/Atomic Force Microscopy(AFM) Studies of Silicon Surfaces Treated in Alkaline Solutions of Interest to Semiconductor Processing

  • Park, Jin-Goo
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.1
    • /
    • pp.55-63
    • /
    • 1995
  • Alkaline solutions such as $NH_4$OH, choline and TMAH (($CH_3$)$_4$NOH) have been introduced in semiconductor wet processing of silicon wafers to control ionic and particulate impurities following etching in acidic solutions. These chemicals usually mixed with hydrogen peroxide and/or surfactants to control the etch rate of silicon. The highest etch rate was observed in $NH_4$OH solutions at a pH in alkaline solutions. It indicates that the etch rate depends on the content of $OH^{-}$ as well as cations of alkaline solutions. STM/AFM techniques were used to characterize the effect of alkaline solutions on silicon surface roughness. In SC1 (mixture of $NH_4$OH : $H_2$$O_2$ : $H_2$O) solutions, the reduction of the ammonium hydroxide proportion from 1 to 0.1 decreased the surface roughness ($R_{rms}$) from 6.4 to $0.8\AA$. The addition of $H_2$$O_2$ and surfactants to choline and TMAH reduced the values of $R_{p-v}$ and $R_{rms}$ significantly. $H_2$$_O2$ and surfactants added in alkaline solutions passivate bare silicon surfaces by the oxidation and adsorption, respectively. The passivation of surfaces in alkaline solutions resulted in lower etch rate of silicon thereby provided smoother surfaces.s.ces.s.

  • PDF

Thermal Stability of Silicon-containing Diamond-like Carbon Film (실리콘 함유 DLC 박막의 내열특성)

  • Kim, Sang-Gweon;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.83-89
    • /
    • 2010
  • Diamond-like carbon (DLC) coating was studied to be a good tribological problem-solver due to its low friction characteristics and high hardness. However, generally hydrogenated DLC film has shown a weak thermal stability above $300^{\circ}C$. However, the silicon doping DLC process by DC pulse plasma enhanced chemical vapor deposition (PECVD) for the new DLC coating which has a good characterization with thermal stability at high temperature itself has been observed. And we were discussed a process for optimizing silicon content to promote a good thermal stability using various tetramethylsilane (TMS) and methane gas at high-temperature. The chemical compositions of silicon-containing DLC film was analyzed using X-ray photoelectron spectroscopy (XPS) before and after heat treatment. Raman spectrum analysis showed the changed structure on the surface after the high-temperature exposure testing. In particular, the hardness of silicon-containing DLC film showed different values before and after the annealing treatment.