DOI QR코드

DOI QR Code

Influences of Target-to-Substrate Distance and Deposition Temperature on a-SiOx/Indium Doped Tin Oxide Substrate as a Liquid Crystal Alignment Layer

RF 마그네트론 스퍼터링에서 증착거리와 증착온도가 무기 액정 배향막의 물리적 성질에 미치는 영향에 대한 연구

  • Park, Jeung-Hun (School of Electronics Engineering, Pusan National University) ;
  • Son, Phil-Kook (School of Electronics Engineering, Pusan National University) ;
  • Kim, Ki-Pom (School of Physics, Pusan National University) ;
  • Pak, Hyuk-Kyu (School of Physics, Pusan National University)
  • 박정훈 (부산대학교 전자공학학부) ;
  • 손필국 (부산대학교 전자공학학부) ;
  • 김기범 (부산대학교 물리학부) ;
  • 박혁규 (부산대학교 물리학부)
  • Published : 2008.10.27

Abstract

We present the structural, optical, and electrical properties of amorphous silicon suboxide (a-$SiO_x$) films grown on indium tin oxide glass substrates with a radio frequency magnetron technique from a polycrystalline silicon oxide target using ambient Ar. For different substrate-target distances (d = 8 cm and 10 cm), the deposition temperature effects were systematically studied. For d = 8cm, oxygen content in a-$SiO_x$ decreased with dissociation of oxygen onto the silicon oxide matrix; temperature increased due to enlargement of kinetic energy. For d = 10 cm, however, the oxygen content had a minimum between $150^{\circ}\;and\;200^{\circ}$. Using simple optical measurements, we can predict a preferred orientation of liquid crystal molecules on a-$SiO_x$ thin film. At higher oxygen content (x > 1.6), liquid crystal molecules on an inorganic liquid crystal alignment layer of a-$SiO_x$ showed homogeneous alignment; however, in the lower case (x < 1.6), liquid crystals showed homeotropic alignment.

Keywords

References

  1. 1. K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, Nature, 384, 338 (1996) https://doi.org/10.1038/384338a0
  2. A. Hohl, T. Wieder, P. A. van Aken, T. E. Weirich, G. Denniger, M. Vidal, S. Oswald, C. Deneke, J. Mayer and H. Fusses, J. Non-cryst. Solids, 320, 255 (2003) https://doi.org/10.1016/S0022-3093(03)00031-0
  3. Z.-X. Ma, X.-B. Liao and J. He, J. Appl. Phys., 83, 7934 (1998) https://doi.org/10.1063/1.367973
  4. X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong and W. D. Song, J. Appl. Phys., 97, 014913 (2005) https://doi.org/10.1063/1.1829789
  5. V. Belot, R. J. P. Corriu, D. Leclercq, P. Lefevre, P. H. Mutin, A. Vioux and A. M. Flank, J. Non-cryst. Solids, 127, 207 (1991) https://doi.org/10.1016/0022-3093(91)90144-U
  6. T. Makimura, Y. Kunii, N. Ono and K. Murakami, Jpn. J. Appl. Phys., Part II, 35, L1703 (1996) https://doi.org/10.1143/JJAP.35.L1703
  7. S. Hasegawa, L. He, T. Inokuma and Y. Kurata, Phys. Rev. B, 46, 12478 (1992) https://doi.org/10.1103/PhysRevB.46.12478
  8. H. S. Bae, T. G. Kim, C. N. Whang, S. Im, J. S. Yun and J. H. Song, J. Appl. Phys., 91, 4078 (2002) https://doi.org/10.1063/1.1452768
  9. N. Tomozeiu, E. E. van Faassen, A. Palmero, W. M. Arnoldbik, A. M. Vredenberg and F. H. P. M. Habraken, Thin Solid Films, 447, 306 (2004) https://doi.org/10.1016/S0040-6090(03)01069-1
  10. R. S. Brusa, G. P. Karwasz, G. Mariotto, A. Zecca, R. Ferragut, P. Folegati, A. Dupasqueier, G. Ottaviani and R. Tonini, J. Appl. Phys., 94, 7483 (2003) https://doi.org/10.1063/1.1627956
  11. G. R. Lin, C. J. Lin and K. C. Yu, J. Appl. Phys., 96, 3025 (2004) https://doi.org/10.1063/1.1775041
  12. F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff and G. Hollinger, Phys. Rev. B, 38, 6084 (1988) https://doi.org/10.1103/PhysRevB.38.6084
  13. A. Pasquarello, M. S. Hybertsen and R. Car, Phys. Rev. Lett., 74, 1024 (1995) https://doi.org/10.1103/PhysRevLett.74.1024
  14. C. Yi, H. U. Kim, S. W. Rhee, S. H. Oh and C.-G. Park, J. Vac. Sci. Technol. B, 19, 2067 (2001) https://doi.org/10.1116/1.1412657
  15. A. B. Christie, In: J. M. Walls (Ed.), X-ray photoelectron spectroscopy in methods of surface analysis, Cambridge University Press, New York, 1987, p. 157.
  16. J. F. Watts and J. Wolstenholme, An introduction to surface analysis by XPS and AES, John Wiley & Sons Ltd., Chichester, 2003, p. 76
  17. E. D. van Hattum, A. Palmero, W. M. Arnoldbik, H. Rudolph and F. H. P. M. Habraken, J. Appl. Phys., 102, 124505 (2007) https://doi.org/10.1063/1.2828163
  18. K.-N. Tu, J. W. Mayer, L. C. Feldman, Electronic Thin Film Science, 1st ed., p. 100-193, Macmillan Publishing Company, New York (1992)
  19. A. K. Kulkarni and L. C. Chang, Thin Solid Films, 301, 17 (1997) https://doi.org/10.1016/S0040-6090(96)09553-3
  20. N. I. Cho and D. I. Park, Thin Solid Films, 308/309, 465 (1997) https://doi.org/10.1016/S0040-6090(97)00441-0
  21. W. T. Tseng, Y. L. Wang and J. Niu, Thin Solid Films, 370, 96 (2000) https://doi.org/10.1016/S0040-6090(00)00941-X
  22. W. Tang, K. Xu, P. Wang and X. Li, Microelectronic Engineering, 66, 445 (2003) https://doi.org/10.1016/S0167-9317(02)00909-7
  23. H. Rinnert, M. Vergnat, G. Marchal and A. Burneau, J. Lumin., 80, 445 (1999) https://doi.org/10.1016/S0022-2313(98)00145-8
  24. H. Miyazaki and T. Goto, J. Non-Cryst. Solids, 352, 329 (2006) https://doi.org/10.1016/j.jnoncrysol.2005.12.008
  25. H. Rinnert, M. Vergnat and G. Marchal, Mater. Sci. Eng. B, 69/70, 484 (2000) https://doi.org/10.1016/S0921-5107(99)00276-7
  26. G. Baur, V. Wittwer and D. W. Berreman, Phys. Lett. A, 56, 142 (1976) https://doi.org/10.1016/0375-9601(76)90175-4
  27. T. J. Scheffer and J. Nehring, J. Appl. Phys., 48, 1783 (1977) https://doi.org/10.1063/1.323928
  28. D. L. Smith, Thin-film deposition principles and practices, 1st ed., p 23-25, McGraw Hill, San Francisco (1995)