Browse > Article
http://dx.doi.org/10.3740/MRSK.2008.18.10.521

Influences of Target-to-Substrate Distance and Deposition Temperature on a-SiOx/Indium Doped Tin Oxide Substrate as a Liquid Crystal Alignment Layer  

Park, Jeung-Hun (School of Electronics Engineering, Pusan National University)
Son, Phil-Kook (School of Electronics Engineering, Pusan National University)
Kim, Ki-Pom (School of Physics, Pusan National University)
Pak, Hyuk-Kyu (School of Physics, Pusan National University)
Publication Information
Korean Journal of Materials Research / v.18, no.10, 2008 , pp. 521-528 More about this Journal
Abstract
We present the structural, optical, and electrical properties of amorphous silicon suboxide (a-$SiO_x$) films grown on indium tin oxide glass substrates with a radio frequency magnetron technique from a polycrystalline silicon oxide target using ambient Ar. For different substrate-target distances (d = 8 cm and 10 cm), the deposition temperature effects were systematically studied. For d = 8cm, oxygen content in a-$SiO_x$ decreased with dissociation of oxygen onto the silicon oxide matrix; temperature increased due to enlargement of kinetic energy. For d = 10 cm, however, the oxygen content had a minimum between $150^{\circ}\;and\;200^{\circ}$. Using simple optical measurements, we can predict a preferred orientation of liquid crystal molecules on a-$SiO_x$ thin film. At higher oxygen content (x > 1.6), liquid crystal molecules on an inorganic liquid crystal alignment layer of a-$SiO_x$ showed homogeneous alignment; however, in the lower case (x < 1.6), liquid crystals showed homeotropic alignment.
Keywords
silicon suboxide; a-$SiO_x$; indium tin oxide (ITO); RF-magnetron sputtering; alignment layer; liquid crystal display;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 1. K. D. Hirschman, L. Tsybeskov, S. P. Duttagupta and P. M. Fauchet, Nature, 384, 338 (1996)   DOI   ScienceOn
2 A. Hohl, T. Wieder, P. A. van Aken, T. E. Weirich, G. Denniger, M. Vidal, S. Oswald, C. Deneke, J. Mayer and H. Fusses, J. Non-cryst. Solids, 320, 255 (2003)   DOI   ScienceOn
3 F. J. Himpsel, F. R. McFeely, A. Taleb-Ibrahimi, J. A. Yarmoff and G. Hollinger, Phys. Rev. B, 38, 6084 (1988)   DOI   ScienceOn
4 T. J. Scheffer and J. Nehring, J. Appl. Phys., 48, 1783 (1977)   DOI   ScienceOn
5 D. L. Smith, Thin-film deposition principles and practices, 1st ed., p 23-25, McGraw Hill, San Francisco (1995)
6 X. Y. Chen, Y. F. Lu, L. J. Tang, Y. H. Wu, B. J. Cho, X. J. Xu, J. R. Dong and W. D. Song, J. Appl. Phys., 97, 014913 (2005)   DOI   ScienceOn
7 T. Makimura, Y. Kunii, N. Ono and K. Murakami, Jpn. J. Appl. Phys., Part II, 35, L1703 (1996)   DOI   ScienceOn
8 N. Tomozeiu, E. E. van Faassen, A. Palmero, W. M. Arnoldbik, A. M. Vredenberg and F. H. P. M. Habraken, Thin Solid Films, 447, 306 (2004)   DOI   ScienceOn
9 Z.-X. Ma, X.-B. Liao and J. He, J. Appl. Phys., 83, 7934 (1998)   DOI   ScienceOn
10 V. Belot, R. J. P. Corriu, D. Leclercq, P. Lefevre, P. H. Mutin, A. Vioux and A. M. Flank, J. Non-cryst. Solids, 127, 207 (1991)   DOI   ScienceOn
11 S. Hasegawa, L. He, T. Inokuma and Y. Kurata, Phys. Rev. B, 46, 12478 (1992)   DOI   ScienceOn
12 H. S. Bae, T. G. Kim, C. N. Whang, S. Im, J. S. Yun and J. H. Song, J. Appl. Phys., 91, 4078 (2002)   DOI   ScienceOn
13 R. S. Brusa, G. P. Karwasz, G. Mariotto, A. Zecca, R. Ferragut, P. Folegati, A. Dupasqueier, G. Ottaviani and R. Tonini, J. Appl. Phys., 94, 7483 (2003)   DOI   ScienceOn
14 E. D. van Hattum, A. Palmero, W. M. Arnoldbik, H. Rudolph and F. H. P. M. Habraken, J. Appl. Phys., 102, 124505 (2007)   DOI   ScienceOn
15 A. Pasquarello, M. S. Hybertsen and R. Car, Phys. Rev. Lett., 74, 1024 (1995)   DOI   ScienceOn
16 A. B. Christie, In: J. M. Walls (Ed.), X-ray photoelectron spectroscopy in methods of surface analysis, Cambridge University Press, New York, 1987, p. 157.
17 J. F. Watts and J. Wolstenholme, An introduction to surface analysis by XPS and AES, John Wiley & Sons Ltd., Chichester, 2003, p. 76
18 H. Rinnert, M. Vergnat and G. Marchal, Mater. Sci. Eng. B, 69/70, 484 (2000)   DOI   ScienceOn
19 K.-N. Tu, J. W. Mayer, L. C. Feldman, Electronic Thin Film Science, 1st ed., p. 100-193, Macmillan Publishing Company, New York (1992)
20 G. Baur, V. Wittwer and D. W. Berreman, Phys. Lett. A, 56, 142 (1976)   DOI   ScienceOn
21 A. K. Kulkarni and L. C. Chang, Thin Solid Films, 301, 17 (1997)   DOI   ScienceOn
22 N. I. Cho and D. I. Park, Thin Solid Films, 308/309, 465 (1997)   DOI   ScienceOn
23 W. Tang, K. Xu, P. Wang and X. Li, Microelectronic Engineering, 66, 445 (2003)   DOI   ScienceOn
24 H. Miyazaki and T. Goto, J. Non-Cryst. Solids, 352, 329 (2006)   DOI   ScienceOn
25 H. Rinnert, M. Vergnat, G. Marchal and A. Burneau, J. Lumin., 80, 445 (1999)   DOI   ScienceOn
26 G. R. Lin, C. J. Lin and K. C. Yu, J. Appl. Phys., 96, 3025 (2004)   DOI   ScienceOn
27 C. Yi, H. U. Kim, S. W. Rhee, S. H. Oh and C.-G. Park, J. Vac. Sci. Technol. B, 19, 2067 (2001)   DOI   ScienceOn
28 W. T. Tseng, Y. L. Wang and J. Niu, Thin Solid Films, 370, 96 (2000)   DOI   ScienceOn