Browse > Article
http://dx.doi.org/10.5423/PPJ.2012.28.2.164

Effect of Foliar and Root Application of Silicon Against Rice Blast Fungus in MR219 Rice Variety  

Abed-Ashtiani, Farnaz (Department of Plant Protection, Universiti Putra Malaysia)
Kadir, Jugah-Bin (Department of Plant Protection, Universiti Putra Malaysia)
Selamat, Ahmad-Bin (Department of Crop Science, Universiti Putra Malaysia)
Hanif, Ahmad Husni Bin-Mohd (Department of Land management, Universiti Putra Malaysia)
Nasehi, Abbas (Department of Plant Protection, Universiti Putra Malaysia)
Publication Information
The Plant Pathology Journal / v.28, no.2, 2012 , pp. 164-171 More about this Journal
Abstract
Rice blast disease caused by Magnaporthe grisea (Hebert) Barr [teleomorph] is one of the most devastating diseases in rice plantation areas. Silicon is considered as a useful element for a large variety of plants. Rice variety MR219 was grown in the glasshouse to investigate the function of silicon in conferring resistance against blast. Silica gel was applied to soil while sodium silicate was used as foliar spray at the rates of 0, 60, 120, 180 g/5 kg soil and 0, 1, 2, 3 ml/l respectively. The treatments were arranged in a completely randomized design. Disease severity and silicon content of leaves were compared between the non-amended controls and rice plants receiving the different rates and sources of silicon. Silicon at all rates of application significantly (${\alpha}$ = 0.05) reduced the severity of disease with highest reduction (75%) recorded in treatments receiving 120 g of silica gel. SEM/EDX observations demonstrated a significant difference in weight concentration of silicon in silica cells on the leaf epidermis between silicon treated (25.79%) and non treated plants (7.87%) indicating that Si-fertilization resulted in higher deposition of Si in silica cells in comparison with non-treated plants. Application of silicon also led to a significant increase in Si contents of leaves. Contrast procedures indicated higher efficiency of silica gel in comparison to sodium silicate in almost all parameters assessed. The results suggest that mitigated levels of disease were associated with silicification and fortification of leaf epidermal cells through silicon fertilization.
Keywords
blast; Magnaporthe grisea; rice; silicon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Winslow, M. D. 1992. Silicon, disease resistance, and yield of rice genotypes under upland cultural conditions. Crop Sci. 32:1208-1213.   DOI
2 Yamanaka, S., Takeda, H., Komatsubara, S., Ito, F., Usami, H., Togawa, E. and Yoshino, K. 2009. Structures and physiological functions of silica bodies in the epidermis of rice plants. Appl. Phys. Lett. 95:123-703.
3 Yoshida, S., Ohnishi, Y. and Kitagishi, K. 1962. Chemical forms, mobility, and deposition of silicon in the rice plant. J. Soil. Sci. Plant Nutr. 8:107-113.
4 Yoshida, S., Navasero, S. and Ramirez, E. 1969. Effects of silica and nitrogen supply on some leaf characters of the rice plant. Plant Soil 31:48-56.   DOI
5 Zanao Junior, L. A. Z., Fontes, R. L. F., Neves, J. C. L., Korndörfer, G. H. and Avila, V. T. 2010. Rice grown in nutrient solution with doses of manganese and silicon. Rev. Bras. Cienc. Solo. 34:1629-1639.   DOI
6 Zhang, C., Wang, L., Nie, Q., Zhang, W. and Zhang, F. 2008. Long-term effects of exogenous silicon on cadmium translocation and toxicity in rice (Oryza sativa L.). Environ. Exp. Bot. 62:300-307.   DOI   ScienceOn
7 Rezende, D., Rodrigues, F., Carré-Missio, V., Schurt, D., Kawamura, I. and Korndörfer, G. 2009. Effect of root and foliar applications of silicon on brown spot development in rice. Australas. Plant Path. 38:67-73.   DOI   ScienceOn
8 Rodrigues, F. A., Benhamou, N., Datnoff, L. E., Jones, J. B. and Belanger, R. R. 2003. Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93:535-546.   DOI   ScienceOn
9 Rodrigues, F. A., Mcnally, D. J., Datnoff, L. E., Jones, J. B., Labbe, C., Benhamou, N., Menzies, J. G. and Belanger, R. R. 2004. Silicon enhances the accumulation of diterpenoid phytoalexins in rice: a potential mechanism for blast resistance. Phytopathology 94:177-183.   DOI   ScienceOn
10 Rodrigues, F. A. and Datnoff, L. E. 2005. Silicon and rice disease management. Fitopatol. Bras. 30:457-469.   DOI
11 Savant, N. K., Snyder, G. H. and Datnoff, L. E. 1996. Silicon management and sustainable rice production. Adv. Agron. 58:151-199.   DOI
12 Scardaci, S., Webster, R., Greer, C., Hill, J., Williams, J., Mutters, R., Brandon, D., McKenzie, K. and Oster, J. 1997. Rice Blast: A New Disease in California Agronomy Fact Sheet Series, 1:2-5.
13 Guevel, M. H., Menzies, J. and Belanger, R. 2007. Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur. J. Plant Pathol. 119:429-436.   DOI
14 Seebold, K. W. 1998. The influence of silicon fertilization on the development and control of blast, caused by Magnaporthe grisea (Hebert) Barr, in upland rice. Ph.D thesis. University of Florida, USA.
15 Seebold, K., Kucharek, T., Datnoff, L., Correa-Victoria, F. and Marchetti, M. 2001. The influence of silicon on components of resistance to blast in susceptible, partially resistant, and resistant cultivars of rice. Phytopathology 91:63-69.   DOI   ScienceOn
16 Tongen, A., Goriely, A. and Tabor, M. 2006. Biomechanical model for appressorial design in Magnaporthe grisea. J. Theor. Biol. 240:1-8.   DOI   ScienceOn
17 Hajano, J. U., Pathan, M. A., Rajput, Q. A. and Lodhi, M. A. 2011. Rice blast mycoflora, symptomatology and pathogenicity. Int. J. Agro Vet. Med. Sci. 5:53-63.
18 Hayasaka, T., Fujii, H. and Ishiguro, K. 2008. The role of silicon in preventing appressorial penetration by the rice blast fungus. Phytopathology 98:1038-1044.   DOI   ScienceOn
19 IRRI. 2002. Standard evaluation system for rice (SES). Los Banos, Philippines, 56 pp
20 Kim, S. G., Kim, K. W., Park, E. W. and Choi, D. 2002. Siliconinduced cell wall fortification of rice leaves: a possible cellular mechanism of enhanced host resistance to blast. Phytopathology 92:1095-1103.   DOI   ScienceOn
21 Liang, Y., Sun, W., Si, J. and Romheld, V. 2005. Effects of foliarand root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol. 54:678-685.   DOI   ScienceOn
22 Mitani, N., Ma, J. F. and Iwashita, T. 2005. Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol. 46:279-283.   DOI   ScienceOn
23 Ma, J. F. and Takahashi, E. 2002. Soil, fertilizer, and plant silicon research in Japan. Elsevier Science, Amsterdam, The Netherlands. 281 pp.
24 Ma, J. F. 2004. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. J. Soil Sci. Plant Nutr. 50:11-18.   DOI
25 Marschner, H. 1995. Beneficial mineral elements. In: Mineral Nutrition of Higher Plants, pp. 405-435. Academic Press, San Diego, USA.
26 Bowen, P., Menzies, J., Ehret, D., Samuels, L. and Glass, A. D. M. 1992. Soluble silicon sprays inhibit powdery mildew development on grape leaves. J. Am. Soc. Hort. Sci. 117:906-912.
27 Cai, K., Gao, D., Luo, S., Zeng, R., Yang, J. and Zhu, X. 2008. Physiological and cytological mechanisms of silicon-induced resistance in rice against blast disease. Physiol. Plant. 134:324-333.   DOI   ScienceOn
28 Couch, B. C. and Kohn, L. M. 2002. A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from Mgrisea. Mycologia 94:683-693.   DOI
29 Datnoff, L. E., Raid, R. N., Snyder, G. H. and Jones, D. B. 1991. Effect of calcium silicate on blast and brown spot intensities and yields of rice. Plant Dis. 75:729-732.   DOI
30 Datnoff, L. E., Snyder, G. H. and Deren, C. W. 1992. Influence of silicon fertilizer grades on blast and brown spot development and yields of rice. Plant Dis. 76:1011-1013.   DOI
31 Datnoff, L., Deren, C. and Snyder, G. 1997. Silicon fertilization for disease management of rice in Florida. Crop Prot. 16:525-531.   DOI   ScienceOn
32 Fawe, A., Abou-Zaid, M., Menzies, J. and Belanger, R. 1998. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88:396-401.   DOI   ScienceOn
33 Datnoff, L., Rodrigues, F. and Seebold, K. 2007. Silicon and plant disease. In: Mineral nutrition and plant disease, ed. by L. E. Datnoff, W. H. Elmer and D. M. Huber, pp. 233-246. The American Phytopathological Society Press, U.S.A.
34 Elliott, C. and Snyder, G. H. 1991. Autoclave-induced digestion for the colorimetric determination of silicon in rice straw. J. Agric. Food Chem. 39:1118-1119.   DOI
35 Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. USA 91:11-17.   DOI   ScienceOn
36 Borel, W., Menzies, J. G. and Belanger, R. R. 2005. Silicon induces antifungal compounds in powdery mildew-infected wheat. Physiol. Mol. Plant. Pathol. 66:108-115.   DOI   ScienceOn
37 Ando, H., Kakuda, K., Fujii, H., Suzuki, K. and Ajiki, T. 2002. Growth and canopy structure of rice plants grown under field conditions as affected by Si application. J. Soil Sci. Plant Nutr. 48:429-432.   DOI
38 Belanger, R. R., Bowen, P. A., Ehret, D. L. and Menzies, J. G. 1995. Soluble silicon: its role in crop and disease management of greenhouse crops. Plant Dis. 79:329-336.   DOI