• 제목/요약/키워드: silicide

검색결과 436건 처리시간 0.028초

다결정 실리콘 기판 위에 형성된 나노급 니켈 코발트 복합실리사이드의 미세구조 분석 (Microstructure Characterization on Nano-thick Nickel Cobalt Composite Silicide on Polycrystalline Substrates)

  • 송오성
    • 한국산학기술학회논문지
    • /
    • 제8권2호
    • /
    • pp.195-200
    • /
    • 2007
  • 최소선폭 $0.1{\mu}m$ 이하의 살리사이드 공정을 상정하여 $10nm-Ni_{0.5}Co_{0.5}/70\;nm-Poly-Si/200\;nm-SiO_2$ 구조로부터 쾌속 열처리를 이용해서 실리사이드 온도를 $600{\sim}1100^{\circ}C$까지 변화시키면서 복합실리사이드를 제조하고 이들의 면저항의 변화와 미세구조의 변화를 면저항 측정기와 TEM 수직단면, 오제이 두께 분석으로 확인하였다. 기존의 동일한 공정으로 제조된 니켈실리사이드에 비해 제안된 니켈 코발트 복합실리사이드는 $900^{\circ}C$까지 저저항을 유지시킬 수 있는 장점이 있었고 20nm 두께의 균일한 실리사이드 층을 폴리실리콘 상부에 형성시킬 수 있었다. 고온 처리시에는 복합실리사이드와 실리콘의 전기적으로 상분리되는 혼합현상으로 고저항 특성이 나타나는 문제를 확인하였다. 제안된 NiCo 합금 박막을 70nm 높이의 폴리실리콘 게이트를 가진 디바이스에 $900^{\circ}C$이하의 실리사이드화 온도에서 효과적으로 산리사이드 공정의 적용이 기대되었다.

  • PDF

Composite target으로 증착된 Mo-silicide의 형성 및 불순물의 거동 (Behavior of Implanted Dopants and Formation of Molybdenum Siliclde by Composite Sputtering)

  • 조현춘;백수현;최진석;황유상;김호석;김동원;심태언;정재경;이종길
    • 한국재료학회지
    • /
    • 제2권5호
    • /
    • pp.375-382
    • /
    • 1992
  • Composite target(MoS$i_{2.3}$)으로 부터 Mo-silicide를 형성시, 단결정 실리콘 위에 P, B$F_2$불순물(5${\times}10^{15}ions/cm^2$)과 다결정 실리콘 위에 P 불순물(5${\times}10^{15}ions/cm^2$)을 이온 주입하여 아르곤 분위기에서 급속열처리(RTA)하였다. 열처리는 600-120$0^{\circ}C$ 온도구간에서 20초간 행하였다. Mo-silicide의 특성 및 불순물의 거동은 4-point probe, X선 회절분석, SEM, SIMS, $\alpha$-step을 통해 조사하였다. 80$0^{\circ}C$에서 부터 MoS$i_2가 형성되며 열처리 온도가 증가할수록 낮은 비저항간을 갖는 안정한 MoS$i_2로 결정화가 이루어진다. 또한 열처리 동안 단결정 실리콘과 다결정 실리콘에서 Mo-silicide층으로 불순물의 내부 확산은 거의 발생하지 않았다.

  • PDF

Effects of elastic strain on the agglomeration of silicide films for electrical contacts in integrated circuit applications

  • Choy, J.H.
    • 한국결정성장학회지
    • /
    • 제14권3호
    • /
    • pp.95-100
    • /
    • 2004
  • This paper reports a potential problem in the electrical performance of the silicide film to silicon contacts with respect to the scaling trend in integrated circuit (IC) devices. The effects of elastic strain on the agglomeration of the coherent silicide film embedded in an infinite matrix are studied employing continuum linear elasticity and finite-difference numerical method. The interface atomic diffusion is taken to be the dominant transport mechanism where both capillarity and elastic strain are considered for the driving forces. Under plane strain condition with elastically homogeneous and anisotropic system with cubic symmetry, the dilatational misfit and the tetragonal misfit in the direction parallel to the film thickness are considered. The numerical results on the shape evolution agree with the known trend that the equilibrium aspect ratio of the film increases with the elastic strain intensity. When the elastic strain intensity is taken to be only a function of the film size, the flat film morphology with a large aspect ratio becomes increasingly unstable since the equilibrium aspect ratio decreases, as the film scales. The shape evolution results in a large decrease in contact to silicon area, and may deteriorate the electrical performances.

Characterization of tantalum silicide films formed by composite sputtering and rapid thermal annealing

  • 조현준;백수현;최진석;마재평;고철기;김동원
    • 한국재료학회지
    • /
    • 제2권1호
    • /
    • pp.27-34
    • /
    • 1992
  • Tantalum silicide films are prepared from a composite $TaSi_{28}$ target source and subjected to rapid thermal annealing($500-1100^{\circ}C$, 20sec) in Ar ambient. The formation and the properties of tantalum silicides have been investigated by using 4-point probe, x-ray diffraction, scanning electron microscope(SEM), Auger electron spectroscope(AES), and ${\alpha}$-step. It has been found that the sample annealed above $700^{\circ}C$ forms a polycrystalline $TaSi_2$ phase, and grains grow in granular form regardless of the kind of substrates. The mechanism of the formation of tantalum silicide is the nucleation and growth by Ta-Si short range reaction. The tantalum silicide film has the relatively low resistivity($70-72.5{\mu}{\Omega}-cm$) and smooth surface roughness.

  • PDF

게이트를 상정한 니켈 실리사이드 박막의 물성과 미세구조 변화 (Property and Microstructure Evolution of Nickel Silicides for Poly-silicon Gates)

  • 정영순;송오성;김상엽;최용윤;김종준
    • 한국재료학회지
    • /
    • 제15권5호
    • /
    • pp.301-305
    • /
    • 2005
  • We fabricated nickel silicide layers on whole non-patterned wafers from $p-Si(100)SiO_2(200nm)$/poly-Si(70 nm)mn(40 nm) structure by 40 sec rapid thermal annealing of $500\~900^{\circ}C$. The sheet resistance, cross-sectional microstructure, surface roughness, and phase analysis were investigated by a four point probe, a field emission scanning electron microscope, a scanning probe microscope, and an X-ray diffractometer, respectively. Sheet resistance was as small as $7\Omega/sq$. even at the elevated temperature of $900^{\circ}C$. The silicide thickness and surface roughness increased as silicidation temperature increased. We confirmed the nickel silicides iron thin nickel/poly-silicon structures would be a mixture of NiSi and $NiSi_2$ even at the $NiSi_2$ stable temperature region.

나노급 두께 니켈실리사이드의 적외선 흡수 특성 (IR Absorption Property in Nano-thick Nickel Silicides)

  • 윤기정;한정조;송오성
    • 한국재료학회지
    • /
    • 제17권6호
    • /
    • pp.323-330
    • /
    • 2007
  • We fabricated thermaly evaporated 10 nmNi/(poly)Si films to investigate the energy saving property of silicides formed by rapid thermal annealing (RTA) at the temperature of $300{\sim}1200^{\circ}C$ for 40 seconds. Moreover, we fabricated $10{\sim}50$ nm-thick ITO/Si films with a rf-sputter as reference films. A four-point tester was used to investigate the sheet resistance. A transmission electron microscope (TEM) and an X-ray diffractometer were used for the determination of cross sectional microstructure and phase changes. A UV-VISNIR and FT-IR (Fourier transform infrared rays spectroscopy) were employed for near-IR and middle-IR absorbance. Through TEM analysis, we confirmed $20{\sim}70nm-thick$ silicide layers formed on the single and polycrystalline silicon substrates. Nickel silicides and ITO films on the single silicon substrates showed almost similar absorbance in near-IR region, while nickel silicides on polycrystalline silicon substrate showed superior absorbance above 850 nm near-IR region to ITO films. Nickel silicide on polycrystalline substrate also showed better absorbance in middle IR region than ITO. Our result implies that nano-thick nickel silicides may have exellent absorbing capacity in near-IR and middle-IR region.

Titanium과 Cobalt silicide의 연구 (A Study of Titanium and Cobalt Silicide)

  • 김상용;유석빈;서용진;김태형;김창일;장의구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.122-126
    • /
    • 1989
  • A composite polycide struoture consisting of refractory metal and noble metal silicide film on top of polysilicon bas been considered as a replacement for polysilicon as a gate electrode and Interconnect line in MOSFET integrated circuits. In this paper presents divice characteristics of NOS with $TiSi_2/n^+$polyoide and $CoSi_2/n^+$polycide gate. Also, evaporated Ti,Co films on polysilicon has been annealed by RTA and furnace annealing in $N_2$ abient at temperature of $400^{\circ}C-1000^{\circ}C$. The Ti-,Co-silioide formation is characterized by 4-point probe, silicide growth rate and Its reproductivity bas been examined by SEM.

  • PDF

Dissociative adsorption and self-assembly of $CaF_2$ on the Si(001)-$4^{\circ}$ off surface

  • 김희동;;;;서재명
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.132-132
    • /
    • 2012
  • Depositing $CaF_2$[0.6% lattice-mismatch] on the Si(001)-$4^{\circ}$ off surface [composed of a single (001) domain with regularly-arrayed double-layer DB steps and located between (1 1 19) and (1 1 21)] held at $700^{\circ}C$, $CaF_2$ molecules are preferentially adsorbed on the dimers and dissociated to Ca and F atoms. Dissociated Ca atoms form a silicide layer of a $2{\times}3$ structure on the (001) terrace, while F atoms are desorbed from the surface. Once the terrace is covered with a calcium silicide layer, CaF starts to be adsorbed selectively on the steps, as shown in Fig. (a). With $CaF_2$ deposition exceeding 1 ML, the (1 1 17) surface having 1-D $CaF_2$ nanodots are formed as shown in Fig. (b). By the present STM study, it has been clearly disclosed that the calcium silicide interfacial layer is preformed prior to adsorption of $CaF_2$ on vicinal Si(001) surface.

  • PDF

코발트/니켈 합금박막으로부터 형성된 복합실리사이드 (Characterization of Composite Silicide Obtained from NiCo-Alloy Films)

  • 송오성;정성희;김득중
    • 한국재료학회지
    • /
    • 제14권12호
    • /
    • pp.846-850
    • /
    • 2004
  • NiCo silicide films have been fabricated from $300{\AA}-thick\;Ni_{1-x}Co_{x}(x=0.1\sim0.9)$ on Si-substrates by varying RTA(rapid thermal annealing) temperatures from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 sec. Sheet resistance, cross-sectional microstructure, and chemical composition evolution were measured by a four point probe, a transmission electron microscope(TEM), and an Auger depth profilemeter, respectively. For silicides of the all composition and temperatures except for $80\%$ of the Ni composition, we observed small sheet resistance of sub- $7\;{\Omega}/sq.,$ which was stable even at $1100^{\circ}C$. We report that our newly proposed NiCo silicides may obtain sub 50 nm-thick films by tunning the nickel composition and silicidation temperature. New NiCo silicides from NiCo-alloys may be more appropriate for sub-0.1${\mu}m$ CMOS process, compared to conventional single phase or stacked composit silicides.