• Title/Summary/Keyword: sheet metal forming process

Search Result 428, Processing Time 0.029 seconds

Influence of Working Variables in Simplified Gear Shaving Process (단순 기어형상의 셰이빙가공에 있어서 작업 변수의 영향)

  • Lee, K.S.;Jung, J.Y.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.5
    • /
    • pp.290-295
    • /
    • 2010
  • Shaving technology is one of the significant metal forming technologies which can make the smooth and fine sheared surface of products after shearing process. The sheared surface on the side wall of the cutting edge is very important because it functions as a basic surface for measuring the dimensions of product. Effective sheared surface after shaving can be influenced by several working variables such as shaving allowance, shaving clearance, type of material and profile of cutting edge. The influence of these variables on shaving characteristics was investigated in this study. A cut-off die to make the simplified gear-shaped products was manufactured. Three kinds of sheet metals (AL5052, SPCC and SAPH440) of 3mm thickness were firstly sheared and then shaved for four shaving allowances and three sharing clearances. It was shown through experiments that the optimum working condition to give the maximum effective sheared surface in shaving was found ; Shaving allowance is 0.2mm and Shaving clearance is 0.01mm.

A Study on the Binding Force of Drawbead in the Sheet Metal Forming Process through the finite element and experimental analysis (해석과 실험을 통한 박판성형공정에서의 드로오비드의 구속력에 관한 연구)

  • Bahn, Gab-su;Mo, Chang-ki;Suh, Eui-kwon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.1
    • /
    • pp.5-14
    • /
    • 2007
  • It is necessary for development of drawing product with press to have suitable material selection & all process design and the problem during press process has been cleared from judgement of experience & trial and error. Recently we can estimate press process result from computer aided design & FEM. But we can get more reliable result when we can put more precise process variants during FEM. In case of using a drawbead that is used for the material inflow, it is considered for us to put material property, other analysis condition & friction figure when material is passing through the drawbead for better FEM. From our study, we have drawn an analogy bead connection depth, friction figure & drawing and restraining load according to kinds of lubrication from experiment & FEM for the drawbead. We applied above result to the drawing experiment & FEM and confirmed the validity. We could notice the relation between friction figure & drawing load and the friction figure variation according to kinds of lubrication. It is expected to draw more precise analogy that can be used for real process due to more precise process variants application to FEM.

  • PDF

Combined Process of Ironing and Redrawing in Progressive Drawing (연속드로잉에서 아이어닝과 리드로잉의 복합공정)

  • Chung, Joon-Ki;Cho, Woong-Shick;Lee, Taek-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.654-661
    • /
    • 2004
  • In deep drawing of sheet metal, there are many cases in which the uniform and thin wall thickness of the drawn products is more important than the bottom thickness. In this case, we can not easily get the deep drawn products with the uniform and precise wall thickness by only drawing process. Therefore in general the manufacturing processes which both the drawing and the ironing process are proceeded sequentially are used. But this method has the disadvantages of a cost-up, decrease of productivity and degradation of quality, because the ironing process is added after the drawing process. In this study, in order to improve those problems and to enhance the effect of deep drawing, the combined process of redrawing and ironing fur multistep drawing of cylindrical cups is used. In this experiment, we considered the characteristics of the combined process such as the relation between the drawing and ironing rates, the drawing limits and the forces needed for operations. The suggested force prediction shows that it can successfully represent experimental results.

Investigation on the Size Effects of Polycrystalline Metallic Materials in Microscale Deformation Processes (미세성형 공정에서 다결정 금속재료의 크기효과에 관한 연구)

  • Kim, Hong-Seok;Lee, Yong-Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1463-1470
    • /
    • 2010
  • Microforming, which exploits the advantages of metal forming technology, appears very promising in manufacturing microparts since it enables the production of parts using various materials at a high production rate, it has high material utilization efficiency, and it facilitates the production of parts with excellent mechanical properties. However, the conventional macroscale forming process cannot be simply scaled down to the micro-scale process on the basis of the extensive results and know-how on the macroscale process. This is because a so-called "size effect" occurs as the part size decreases to the microscale. In this paper, we attempt to develop an effective analytical and experimental modeling technique for explaining the effects of the grain size and the specimen size on the behavior of metals in microscale deformation processes. Copper sheet specimens of different thicknesses were prepared and heat-treated to obtain various grain sizes for the experiments. Tensile tests were conducted to investigate the influence of specimen thickness and grain size on the flow stress of the material. In addition, an analytical model was developed on the basis of phenomenological experimental findings to quantify the effects of the grain size and the specimen size on the flow stress of the material in microscale and macroscale forming.

Stress-Based Springback Reduction of an AHSS Front Side Member (고강도강 프런트 사이드멤버의 응력분포 최적화를 통한 스프링백 저감)

  • Song J.H.;Kim S.H.;Park S.H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.295-303
    • /
    • 2006
  • Optimization is carried out to determine process parameters which reduce the amount of springback and improve shape accuracy of a deep drawn product in sheet metal forming process. The study uses the amount of stress deviation along the thickness direction in the deep drawn product as an indicator of springback instead of springback simulation. The scheme incorporates with an explicit elasto-plastic finite element method for calculation of the final shape and the stress deviation The optimization method adopts the response surface method in order to seek for the optimum condition of process parameters such as the blank holding force and the draw-bead force. The present scheme is applied to design of the variable blank holding force in an U-draw bending process and the application is further extend ε d to the design of draw-bead force in a front side member formed with advanced high strength steel (AHSS) sheets of DP60. Results show that design of process parameter is well performed to decrease the stress deviation through the thickness and to reduce the amount of springback. The present analysis provides a guideline in a design stage for controlling the springback based on the finite element simulation of the complicated parts.

Influence of Clearance in Half-piecing of Sheet Metal (금속판재의 하프피어싱 공정에서의 틈새 영향 연구)

  • Yeon, S.M.;Lee, S.K.;Chung, W.J.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.437-441
    • /
    • 2013
  • Recently, the engraving of letters or a pattern on a product surface has received more attention especially in trying to satisfy the customer requirements. Half-piecing is a protrusion forming process that pierces only 40~50% of the material thickness. In the current study, the half-piercing technique for making clear letters by protruding sheet material was selected and studied. The influence of clearance and penetration depth was investigated by measuring the camber and extruded length of a protrusion after experiments. In addition, a numerical analysis was performed for the same working conditions and compared with experimental results. It is shown that, as the clearance increases, the camber of a protrusion increases rapidly and the extruded length decreases slightly. The deformation pattern around the cutting edge during half-piercing changes from an extrusion mode to a shearing mode as the clearance changes from minus to plus values. It is also confirmed that the experimental results show a good agreement with the numerical analyses.

Experimental Verification of Equivalent Drawbead Model and Application to Auto-Body Stamping Analysis (등가 드로비드 모델의 실험적 검증 및 차체 스탬핑 해석에 적용)

  • Moon, S.J.;Lee, J.Y.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.18 no.5
    • /
    • pp.371-376
    • /
    • 2009
  • An equivalent drawbead model(EDM) for sheet metal forming analysis, which replaces complex drawbead geometries with drawbead forces in modeling the stamping dies with finite elements, is experimentally verified and applied to the numerical simulation of auto-panel stamping process. The drawbead restraining and opening forces of elliptical drawbead, circular drawbead, square drawbead, and step drawbead are obtained by performing the drawbead pulling test and compared with those of EDM and commercial code models(CCM). Better agreement with experimental measurements is found in EDM than CCM. Furthermore, the excellence of EDM is demonstrated in its application to the auto-body stamping analysis.

Application of Equivalent Drawbead Model to Auto-Body Stamping Analysis (차체 스탬핑 해석에 등가 드로우비드 모델의 적용)

  • Lee, J.Y.;Moon, S.J.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.389-392
    • /
    • 2009
  • The application of an equivalent drawbead model(EDM) for sheet metal forming analysis, which adopts the forces instead of complex geometries in modeling the drawbead, to the numerical simulation of auto-panel stamping process is introduced in this study. In terms of the thinning and draw-in, better agreement with experimental measurements was found in EDM than in commercial code models so that the excellence of EDM in the accuracy of drawbead forces for the simulation of auto-body stampings was revealed.

  • PDF

Welding analysis with linear solid-shell element (선형 Solid-shell 을 이용한 용접해석)

  • Choi, Kang-Hyouk;Kim, Ju-Wan;Im, Se-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.728-732
    • /
    • 2004
  • In the FE analysis of sheet metal forming, efficient results can be obtained by using shell elements rather than using solid elements. However, shell elements have some limitations to describe three-dimensional material laws. In the recent years, solid-shell element, which has only translational degree of freedom like solid element, has been presented. The assumed nature strain (ANS) and enhanced assumed strain (EAS) methods can be used to remove several solid-shell locking problems. In this paper, ANS method was used for diminish transverse shear locking and EAS method for thickness locking. Using the element, the steel pipe making process from flat plate analyzed effectively, which is including bending and welding.

  • PDF

Finite Element Inverse Analysis of the Deep Drawing Process Considering Bending History (굽힘이력을 고려한 딥드로잉공정의 유한요소역해석)

  • Huh, J.;Yoon, J.H.;Bao, Y.D.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.590-595
    • /
    • 2007
  • This paper introduces a new approach to take account of bending history in finite element inverse analysis during sheet metal forming process. A modified membrane element was adopted for finite element inverse analysis so that bending-unbending energy was additionally imposed in the total plastic energy, predicting bending-unbending regions using the geometry of the final shape and tools. An algorithm was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain were compared with those obtained from the incremental finite element analysis in order to evaluate the effect of the bending history. The algorithm reduced the difference between the results of the inverse analysis from those of the incremental analysis due to bending history. The analysis was also carried out with the variation of the thickness of the initial blank to investigate the effect of bending deformation. The results showed that the difference was remarkably reduced as the thickness of the initial blank increased. This indicates that the finite element inverse analysis cooperated with the suggested scheme is useful to obtain more accurate results, especially when bending effects are significant.