• Title/Summary/Keyword: shear key

Search Result 591, Processing Time 0.029 seconds

Construction Method for Forming Concrete Shear Keys at Vertical Construction Joints of Slurry Walls (지하연속벽 수직시공이음부에 콘크리트 전단키를 형성하는 시공기술)

  • Lee, Jeong-Young;Kim, Seung-Weon;Kim, Doo-Kie
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.401-402
    • /
    • 2023
  • The shear connection of the vertical construction joint of a slurry wall by the concrete shear key has excellent structural performance and is economical and eco-friendly. However, technology for forming concrete shear keys in the underground is still underdeveloped. This paper proposes the development of the construction technology required to form a concrete shear key at the vertical construction joint of the slurry wall.

  • PDF

Analysis of Shear Behavior of Shear Key for Concrete Track on Railway Bridge Considering Construction Joint (타설 경계면을 고려한 철도교 콘크리트궤도 전단키의 전단 거동 해석)

  • Lee, Seong-Cheol;Kang, Yun-Suk;Jang, Seung Yup
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.3
    • /
    • pp.341-350
    • /
    • 2016
  • Concrete track on railway bridges should be designed to effectively respond to the movement of the superstructure of the bridge. In the design procedure, shear keys are generally placed on the protection concrete layer (PCL) before casting the concrete track so the shear force due to slip between the concrete track and the bridge super-structure can be transferred. In this paper, a nonlinear structural analysis procedure that considers the construction joint has been developed to predict the shear behavior of a shear key. With the developed analysis procedure, it was possible to predict the shear force-shear slip response at the construction joint in a shear key by considering the friction of concrete surface and the dowel action of the rebars. The analysis results showed good agreement with the test results for 4 specimens.

Tension-Shear Experimental Analysis and Fracture Models Calibration on Q235 Steel

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Yazhi;Zhu, Dongping;Lu, Lu
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1784-1800
    • /
    • 2018
  • Tension-shear loading is a common loading condition in steel structures during the earthquake shaking. To study ductile fracture in structural steel under multiple stress states, experimental investigations on the different fracture mechanisms in Chinese Q235 steel were conducted. Different tension-shear loading conditions achieved by using six groups of inclined notch butterfly configurations covering pure shear, tension-shear and pure tension cases. Numerical simulations were carried out for all the specimens to determine the stress and strain fields within the critical sections. Two tension-shear fracture models were calibrated based on the hybrid experimental-numerical procedure. The equivalent fracture strain obtained from the round bar under tensile loading was used for evaluating these two models. The results indicated that the tension-shear criterion as a function of the shear fracture parameter had better performance in predicting the fracture initiation of structural steel under different loading conditions.

Effect of Oxygen and Shear Stress on Molecular Weight of Hyaluronic Acid Produced by Streptococcus zooepidemicus

  • Duan, Xu-Jie;Yang, Li;Zhang, Xu;Tan, Wen-Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.718-724
    • /
    • 2008
  • Dissolved oxygen (DO) and shear stress have pronounced effects on hyaluronic acid (HA) production, yet various views persist about their effects on the molecular weight of HA. Accordingly, this study investigated the effects of DO and shear stress during HA fermentation. The results showed that both cell growth and HA synthesis were suppressed under anaerobic conditions, and the HA molecular mass was only $(1.22{\pm}0.02){\times}10^6 Da$. Under aerobic conditions, although the DO level produced no change in the biomass or HA yield, a high DO level favored the HA molecular mass, which reached a maximum value of $(2.19{\pm}0.05){\times}10^6 Da$ at 50% DO. Furthermore, a high shear stress delayed the rate of HA synthesis and decreased the HA molecular weight, yet had no clear effect on the HA yield. Therefore, a high DO concentration and mild shear environment would appear to be essential to enhance the HA molecular weight.

Effect of Shear Key and U strip on Flexural Behavior of Reinforced Concrete Beams Strengthened by CFS(Carbon Fiber Sheet) (탄소섬유쉬트로 보강된 철근콘크리트 보의 휨거동에 전단키와 U 스터립이 미치는 영향)

  • Choi, Hong-Shik;Lee, Chin-Yong;Yi, Seong-Tae;Lee, Si-Woo;Heo, Gweon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.88-91
    • /
    • 2004
  • It is generally known that the bonding strength of RC(Reinforced Concrete) flexural members strengthened by fiber sheet composites are sufficient and the bonding failure does not occur until the sheet failed. However, many researchers have been reported that, before the failure of the sheet, the bonding failure happens even though the bonding length is sufficient. This study was carried out to evaluate the effectiveness of shear key and U strip on flexural behavior of reinforced concrete beam structures. The ply number of CFS(Carbon Fiber Sheet), location of shear key, and existence or not of U strip were selected as the main test variables. Test results show that the behavior of a beam of which shear key is located in the nearby. of support and U strip is not existent, and having CFS of 1 ply is mostly improved.

  • PDF

Shear behavior of a demountable bolted connector in steel-UHPC lightweight composite structures

  • Gu, Jin-Ben;Wang, Jun-Yan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.551-563
    • /
    • 2022
  • Bolted connector could be an alternative to replace the conventional welded headed stud in steel-ultra high performance concrete (UHPC) lightweight composite structures. In this paper, a novel demountable bolted shear connector, consisting of a high-strength bolt (HSB) and a specially-designed nut which is pre-embedded in a thin UHPC slab, is proposed, which may result in the quick installation and disassembly, due to the mountable, demountable and reusable features. In order to study the shear behavior of the new type of bolted shear connector, static push-out tests were conducted on five groups of the novel demountable bolted shear connector specimens and one group of conventional welded headed stud specimen for comparison. The effect of the bolt shank diameter and aspect ratio of bolt on failure mode, shear stiffness, peak slip at the steel-UHPC interface, shear strength and ductility of novel bolted connectors is investigated. Additionally, design formula for the shear strength is proposed to check the suitability for assessment of the novel demountable bolted shear connectors.

Shear Resistance Performance of Vertical Construction Joints in Slurry Walls Using Concrete Shear Keys (콘크리트 전단키에 의한 지하연속벽 수직시공이음부의 전단저항 성능)

  • Lee, Jeong-Young;Kim, Seung-Weon;Kim, Doo-Kie
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.399-400
    • /
    • 2023
  • Current building structural standards require the shear strength and rigidity in the design of vertical construction joints in a slurry wall. This paper proposes a shear key resistance method for shear connection of vertical construction joints, and compares its structural performance with the currently prevalent method of shear friction rebar. The study found the structural performance of the shear key resistance method was significantly better than that of the shear friction rebar method.

  • PDF

Hysteresis performance of earthquake-damaged resilient RAC shear walls retrofitted with CFRP strips and steel plates

  • Jianwei Zhang;Siyuan Wang;Man Zhang;Yuping Sun;Hongwei Wang
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.357-376
    • /
    • 2024
  • In this paper, weakly bonded ultra-high-strength steel bars (UHSS) were used as longitudinal reinforcement in recycled aggregate concrete shear walls to achieve resilient performance. The study evaluated the repairability and hysteresis performance of shear walls before and after retrofitting. Quasi-static tests were performed on recycled aggregate concrete (RAC) and steel fiber reinforced recycled aggregate concrete (FRAC) shear walls to investigate the reparability of resilient shear walls when loaded to 1% drift ratio. Results showed that shear walls exhibited drift-hardening properties. The maximum residual drift ratio and residual crack width at 1% drift ratio were 0.107% and 0.01mm, respectively, which were within the repairable limits. Subsequently, shear walls were retrofitted with bonded X-shaped CFRP strips and steel plates wrapped at the bottom and retested. Except for a slight reduction in initial stiffness, earthquake-damaged resilient shear walls retrofitted with a composite method still had satisfactory hysteresis performance. A revised damage assessment index D, has been proposed to assess of damage degree. Moreover, finite-element analysis for the shear wall before and after retrofit retrofitting was established in OpenSees and verified with experimental results. The finite element results and test results were in good agreement. Finally, parametric analysis was performed.

Evaluation of soil-concrete interface shear strength based on LS-SVM

  • Zhang, Chunshun;Ji, Jian;Gui, Yilin;Kodikara, Jayantha;Yang, Sheng-Qi;He, Lei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.361-372
    • /
    • 2016
  • The soil-concrete interface shear strength, although has been extensively studied, is still difficult to predict as a result of the dependence on many factors such as normal stresses, surface roughness, particle sizes, moisture contents, dilation angles of soils, etc. In this study, a well-known rigorous statistical learning approach, namely the least squares support vector machine (LS-SVM) realized in a ubiquitous spreadsheet platform is firstly used in estimating the soil-structure interface shear strength. Instead of studying the complicated mechanism, LS-SVM enables to explore the possible link between the fundamental factors and the interface shear strengths, via a sophisticated statistic approach. As a preliminary investigation, the authors study the expansive soils that are found extensively in most countries. To reduce the complexity, three major influential factors, e.g., initial moisture contents, initial dry densities and normal stresses of soils are taken into account in developing the LS-SVM models for the soil-concrete interface shear strengths. The predicted results by LS-SVM show reasonably good agreement with experimental data from direct shear tests.

Evolution of sandstone shear strength parameters and its mesoscopic mechanism

  • Shi, Hao;Zhang, Houquan;Song, Lei
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • It is extremely important to obtain rock strength parameters for geological engineering. In this paper, the evolution of sandstone cohesion and internal friction angle with plastic shear strain was obtained by simulating the cyclic loading and unloading tests under different confining pressures using Particle Flow Code software. By which and combined with the micro-crack propagation process, the mesoscopic mechanism of parameter evolution was studied. The results show that with the increase of plastic shear strain, the sandstone cohesion decreases first and then tends to be stable, while the internal friction angle increases first, then decreases, and finally maintains unchanged. The evolution of sandstone shear strength parameters is closely related to the whole process of crack formation, propagation and coalescence. When the internal micro-cracks are less and distributed randomly and dispersedly, and the rock shear strength parameters (cohesion, internal friction angle) are considered to have not been fully mobilized. As the directional development of the internal micro-fractures as well as the gradual formation of macroscopic shear plane, the rock cohesion reduces continuously and the internal friction angle is in the rise stage. As the formation of the macroscopic shear plane, both the rock cohesion and internal friction angle continuously decrease to a certain residual level.