Browse > Article
http://dx.doi.org/10.1007/s13296-018-0079-x

Tension-Shear Experimental Analysis and Fracture Models Calibration on Q235 Steel  

Huang, Xiaogang (Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University)
Zhou, Zhen (Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University)
Zhu, Yazhi (Department of Structural Engineering, Tongji University)
Zhu, Dongping (Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University)
Lu, Lu (State Grid Jiangsu Economic Research Institute)
Publication Information
International journal of steel structures / v.18, no.5, 2018 , pp. 1784-1800 More about this Journal
Abstract
Tension-shear loading is a common loading condition in steel structures during the earthquake shaking. To study ductile fracture in structural steel under multiple stress states, experimental investigations on the different fracture mechanisms in Chinese Q235 steel were conducted. Different tension-shear loading conditions achieved by using six groups of inclined notch butterfly configurations covering pure shear, tension-shear and pure tension cases. Numerical simulations were carried out for all the specimens to determine the stress and strain fields within the critical sections. Two tension-shear fracture models were calibrated based on the hybrid experimental-numerical procedure. The equivalent fracture strain obtained from the round bar under tensile loading was used for evaluating these two models. The results indicated that the tension-shear criterion as a function of the shear fracture parameter had better performance in predicting the fracture initiation of structural steel under different loading conditions.
Keywords
Ductile fracture; Tension-shear loading; Structural steel; Failure models calibration; Experiments; Finite element analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gologanu, M., Leblond, J. B., & Devaux, J. (1993). Approximate models for ductile metals containing non-spherical voids-case of axisymmetric prolate ellipsoidal cavities. Journal of the Mechanics and Physics of Solids, 41(11), 1723-1754.   DOI
2 Gurson, A. L. (1977). Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media. Journal of Engineering Materials and Technology, 99(1), 2-15.   DOI
3 Xue, Z., Pontin, M. G., Zok, F. W., et al. (2010). Calibration procedures for a computational model of ductile fracture. Engineering Fracture Mechanics, 77(3), 492-509.   DOI
4 Jia, L. J., Ge, H., Shinohara, K., et al. (2016). Experimental and numerical study on ductile fracture of structural steels under combined shear and tension. Journal of Bridge Engineering, 21(5), 04016008.   DOI
5 Zhou, Z., Xie, Q., Lei, X. C., et al. (2015). Experimental investigation of the hysteretic performance of dual-tube self-centering buckling-restrained braces with composite tendons. Journal of Composites for Construction, 19(6), 04015011.   DOI
6 Zhu, Y., & Engelhardt, M. D. (2018a). A nonlocal triaxiality and shear dependent continuum damage model for finite strain elastoplasticity. European Journal of Mechanics-A/Solids, 71, 16-33.   DOI
7 Zhu, Y., & Engelhardt, M. D. (2018b). Prediction of ductile fracture for metal alloys using a shear modified void growth model. Engineering Fracture Mechanics, 190, 491-513.   DOI
8 Hooputra, H., Gese, H., Dell, H., et al. (2004). A comprehensive failure model for crashworthiness simulation of aluminium extrusions. International Journal of Crashworthiness, 9(5), 449-464.   DOI
9 Huang, B., Wang, C., Chen, Q., et al. (2013). Low-cycle fatigue test of Q235 steel buckling-restrained braces. China Civil Engineering Journal, 6, 009.
10 Jia, L. J., & Kuwamura, H. (2013). Ductile fracture simulation of structural steels under monotonic tension. Journal of Structural Engineering, 140(5), 04013115.
11 Johnson, G. R., & Cook, W. H. (1985). Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1), 31-48.   DOI
12 Jones, S. L., Fry, G. T., & Engelhardt, M. D. (2002). Experimental evaluation of cyclically loaded reduced beam section moment connections. Journal of Structural Engineering, 128(4), 441-451.   DOI
13 Kanvinde, A. M., & Deierlein, G. G. (2007). Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue. Journal of Engineering Mechanics, 133(6), 701-712.   DOI
14 Kang, L., Ge, H., & Fang, X. (2016). An improved ductile fracture model for structural steels considering effect of high stress triaxiality. Construction and Building Materials, 115, 634-650.   DOI
15 Kang, L., Ge, H., & Kato, T. (2015). Experimental and ductile fracture model study of single-groove welded joints under monotonic loading. Engineering Structures, 85, 36-51.   DOI
16 Kanvinde, A. (2016). Predicting fracture in civil engineering steel structures: State of the art. Journal of Structural Engineering, 143, 03116001.
17 Kanvinde, A. M., & Deierlein, G. G. (2004). Micromechanical simulation of earthquake-induced fracture in steel structures. Stanford, California: Blume Center TR145, Stanford University.
18 Kanvinde, A. M., & Deierlein, G. G. (2006). Void growth model and the stress modified critical strain model to predict ductile fracture in structural steels. Journal of Structural Engineering, 132(12), 1907-1918.   DOI
19 Li, H., Fu, M., Lu, J., & Yang, H. (2011). Ductile fracture: Experiments and computations. International Journal of Plasticity, 27(2), 147-180.   DOI
20 Li, W., Liao, F., Zhou, T., et al. (2016). Ductile fracture of Q460 steel: Effects of stress triaxiality and Lode angle. Journal of Constructional Steel Research, 123, 1-17.   DOI
21 Momenzadeh, S., Kazemi, M. T., & Asl, M. H. (2017). Seismic performance of reduced web section moment connections. International Journal of Steel Structures, 17(2), 413-425.   DOI
22 Li, C., Zhou, Z., Zhu, Y., et al. (2017). A unified damage factor model for ductile fracture of steels with different void growth and shrinkage rates. Fatigue & Fracture of Engineering Materials & Structures, 41, 1132-1145.
23 Lou, Y., Chen, L., Clausmeyer, T., et al. (2017). Modeling of ductile fracture from shear to balanced biaxial tension for sheet metals. International Journal of Solids and Structures, 112, 169-184.   DOI
24 Madou, K., & Leblond, J. B. (2012a). A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids-I: Limit-analysis of some representative cell. Journal of the Mechanics and Physics of Solids, 60(5), 1020-1036.   DOI
25 Mahin, S. A. (1998). Lessons from damage to steel buildings during the Northridge earthquake. Engineering Structures, 20(4-6), 261-270.   DOI
26 Malcher, L., Andrade Pires, F. M., & Cesar De Sa, J. M. A. (2012). An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality. International Journal of Plasticity, 30, 81-115.
27 Nielsen, K. L., Dahl, J., & Tvergaard, V. (2012). Collapse and coalescence of spherical voids subject to intense shearing: Studied in full 3D. International Journal of Fracture, 177(2), 97-108.   DOI
28 Myers AT, Deierlein GG, Kanvinde AM. (2009). Testing and probabilistic simulation of ductile fracture initiaion in structural steel. Blume Cent Rep.
29 Nahshon, K., & Hutchinson, J. W. (2008). Modification of the Gurson model for shear failure. European Journal of Mechanics-A/Solids, 27(1), 1-17.   DOI
30 Nakashima, M., Inoue, K., & Tada, M. (1998). Classification of damage to steel buildings observed in the 1995 Hyogoken-Nanbu earthquake. Engineering Structures, 20(4-6), 271-281.   DOI
31 Oh, C. S., Kim, N. H., Kim, Y. J., et al. (2011). A finite element ductile failure simulation method using stress-modified fracture strain model. Engineering Fracture Mechanics, 78(1), 124-137.   DOI
32 Madou, K., & Leblond, J. B. (2012b). A Gurson-type criterion for porous ductile solids containing arbitrary ellipsoidal voids-II: Determination of yield criterion parameters. Journal of the Mechanics and Physics of Solids, 60(5), 1037-1058.   DOI
33 Bao, Y. (2003). Prediction of ductile crack formation in uncracked bodies. Ph.D. Dissertation, Massachusetts Institute of Technology.
34 Anderson, T. L. (2005). Fracture mechanics: Fundamentals and applications (3rd ed.). Boca Raton: CRC Press.
35 Bai, Y., Teng, X., & Wierzbicki, T. (2009). On the application of stress triaxiality formula for plane strain fracture testing. Journal of Engineering Materials and Technology, 131(2), 021002.   DOI
36 Bai, Y., & Wierzbicki, T. (2010). Application of extended Mohr-Coulomb criterion to ductile fracture. International Journal of Fracture, 161(1), 1-20.   DOI
37 Bao, Y., & Wierzbicki, T. (2004). On fracture locus in the equivalent strain and stress triaxiality space. International Journal of Mechanical Sciences, 46(1), 81-98.   DOI
38 Rice, J. R., & Tracey, D. M. (1969). On the ductile enlargement of voids in triaxial stress fields. Journal of the Mechanics and Physics of Solids, 17(3), 201-217.   DOI
39 Papasidero, J., Doquet, V., & Mohr, D. (2014). Determination of the effect of stress state on the onset of ductile fracture through tension-torsion experiments. Experimental Mechanics, 54(2), 137-151.   DOI
40 Qi, L., Xue, J., & Leon, R. T. (2017). Experimental and analytical investigation of transition steel connections in traditional-style buildings. Engineering Structures, 150, 438-450.   DOI
41 Wierzbicki, T., Xue, L. (2005). On the effect of the third invariant of the stress deviator on ductile fracture. Impact and Crashworthiness Laboratory, Technical report, 136.
42 Scheyvaerts, F., Onck, P. R., Tekoglu, C., et al. (2011). The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension. Journal of the Mechanics and Physics of Solids, 59(2), 373-397.   DOI
43 Smith, C., Kanvinde, A., & Deierlein, G. (2017). A local criterion for ductile fracture under low-triaxiality axisymmetric stress states. Engineering Fracture Mechanics, 169, 321-335.   DOI
44 Wang, Y., Zhou, H., Shi, Y., et al. (2011). Fracture prediction of welded steel connections using traditional fracture mechanics and calibrated micromechanics based models. International Journal of Steel Structures, 11(3), 351-366.   DOI
45 Xue, L. (2008). Constitutive modeling of void shearing effect in ductile fracture of porous materials. Engineering Fracture Mechanics, 75(11), 3343-3366.   DOI
46 Xue, Z., Faleskog, J., & Hutchinson, J. W. (2013). Tension-torsion fracture experiments-Part II: Simulations with the extended Gurson model and a ductile fracture criterion based on plastic strain. International Journal of Solids and Structures, 50(25), 4258-4269.   DOI
47 Bomarito, G., & Warner, D. (2015). Micromechanical investigation of ductile failure in al 5083-h116 via 3d unit cell modeling. Journal of the Mechanics and Physics of Solids, 74, 97-110.   DOI
48 Barsoum, I., & Faleskog, J. (2007). Rupture mechanisms in combined tension and shear-experiments. International Journal of Solids and Structures, 44(6), 1768-1786.   DOI
49 Barsoum, I., & Faleskog, J. (2011). Micromechanical analysis on the influence of the Lode parameter on void growth and coalescence. International Journal of Solids and Structures, 48(6), 925-938.   DOI
50 Beese, A. M., Luo, M., Li, Y., et al. (2010). Partially coupled anisotropic fracture model for aluminum sheets. Engineering Fracture Mechanics, 77(7), 1128-1152.   DOI
51 Bridgman, P. W. (1964). Studies in large plastic flow and fracture. Cambridge: Harvard University Press.
52 Dunand, M., & Mohr, D. (2011). Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading. Engineering Fracture Mechanics, 78(17), 2919-2934.   DOI
53 Ghahremaninezhad, A., & Ravi-Chandar, K. (2013). Ductile failure behavior of polycrystalline Al 6061-T6 under shear dominant loading. International Journal of Fracture, 180(1), 23-39.   DOI